Math, asked by paulmary2332005, 1 month ago

x²-7x+9 வர்க்கங்களின் கூடுதல் காண்க.​

Answers

Answered by gita10
0

Answer:

I am not understanding this language?

Answered by steffiaspinno
0

The roots of the given equation are \alpha =\frac{49+\sqrt{13} }{2} and  \beta =\frac{49-\sqrt{13} }{2}

Explanation:

Given:

x²-7x+9

To find:

Roots of the equation

Formula:

\alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

\beta =\frac{-b-\sqrt{b^{2}-4ac } }{2a}

Solution:

==> From the equation x²-7x+9

==> a = Coefficient of x²

==> b = Coefficient of x

==> c = Constant

==> a = 1

==> b = -7

==> c = 9

==> Substitute the values in the formula

==> \alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

==> \alpha =\frac{-(-7)+\sqrt{(-7)^{2}-4(1)(9) } }{2(1)}

==> \alpha =\frac{49+\sqrt{49-4(9) } }{2}

==> \alpha =\frac{49+\sqrt{49-36} }{2}

==> \alpha =\frac{49+\sqrt{49-36} }{2}

==> \alpha =\frac{49+\sqrt{13} }{2}

==> Substitute the values in the formula

==> \beta =\frac{-b-\sqrt{b^{2}-4ac } }{2a}

==> \beta =\frac{-(-7)-\sqrt{(-7)^{2}-4(1)(9) } }{2(1)}

==> \beta =\frac{49-\sqrt{49-4(9) } }{2}

==> \beta =\frac{49-\sqrt{49-36} }{2}

==> \beta =\frac{49-\sqrt{49-36} }{2}

==> \beta =\frac{49-\sqrt{13} }{2}

The roots of the given equation are \alpha =\frac{49+\sqrt{13} }{2} and  \beta =\frac{49-\sqrt{13} }{2}

Similar questions