Math, asked by sam9404, 1 year ago

x²-(root 3+1)x+root 3=0 by completing square method​

Answers

Answered by LovelyG
15

Answer:

√3 and 1

Step-by-step explanation:

 \large{ \mathfrak{ \underline{ \underline{ \sf \star \:  Given \: that : }}}}

\sf x {}^{2}  - ( \sqrt{3} + 1)x  + \sqrt{3}  = 0 \\  \\ \sf  \rightarrow   x {}^{2}  -  \frac{2}{2}.( \sqrt{3}  + 1)x +  \sqrt{3}  = 0 \\  \\  \sf  \rightarrow x {}^{2}  - 2 \: . \: x \: . \:  \frac{ \sqrt{3}  + 1}{2}  +  \sqrt{3}  = 0 \\  \\  \sf  \rightarrow \tiny x {}^{2}  - 2 \: . \: x \: . \:  \frac{ \sqrt{3}  + 1}{2}  + ( \frac{ \sqrt{3} + 1 }{2} ) {}^{2}  +  \sqrt{3}  = ( \frac{ \sqrt{3}  + 1}{2} ) {}^{2} \\  \\  \sf  \rightarrow  \{x - ( \frac{ \sqrt{3}  + 1}{2} ) \} {}^{2}  +  \sqrt{3}   = (\frac{ \sqrt{3}  + 1}{2} ) {}^{2}  \\  \\  \sf  \rightarrow  \{x - ( \frac{ \sqrt{3}  + 1}{2} ) \} {}^{2} =   \{(\frac{ \sqrt{3}  + 1}{2} ) {}^{2} -  \sqrt{3} \} \\\\ \rightarrow \sf  \{x - ( \frac{ \sqrt{3} + 1 }{2} ) \} {}^{2}  =  \frac{3 + 1 + 2 \sqrt{3} }{4}  -  \sqrt{3}  \\  \\  \rightarrow \sf  \{x - ( \frac{ \sqrt{3} + 1 }{2} ) \} {}^{2}  = \frac{3 + 1 + 2 \sqrt{3} - 4 \sqrt{3}  }{4}  \\  \\  \rightarrow \sf  \{x - ( \frac{ \sqrt{3} + 1 }{2} ) \} {}^{2}  =  \frac{3 + 1 - 2 \sqrt{3} }{4}\\ \\  \sf  \rightarrow  \{x - ( \frac{ \sqrt{3}  + 1}{2} ) \} {}^{2} =   \{(\frac{ \sqrt{3}   - 1}{2} ) {}^{2} \}\\  \\ \bf on \: cancelling \: square \: both \: sides -   \\  \\ \sf  \rightarrow  \{x - ( \frac{ \sqrt{3}  + 1}{2} ) \}  =   \pm(\frac{ \sqrt{3}  + 1}{2} )  \\  \\ \sf  \rightarrow x =  \frac{ \sqrt{3}  + 1}{2} \pm  \frac{ \sqrt{3}   -  1}{2}

Therefore, roots of the equation are:

\sf  \rightarrow  x =  \frac{ \sqrt{3} + 1 }{2}  +  \frac{ \sqrt{3}  - 1}{2}  \\  \\ \sf  \rightarrow  x =  \frac{ \sqrt{3} + 1 +  \sqrt{3}- 1}{2}  \\  \\ \sf  \rightarrow  x =  \frac{2 \sqrt{3} }{2}  \\  \\  \boxed{\sf  \therefore \bf  x =  \sqrt{3} }

Also,

\sf  \rightarrow  x =  \frac{ \sqrt{3}  + 1}{2}  - ( \frac{ \sqrt{3}  - 1}{2} ) \\  \\ \sf  \rightarrow  x =  \frac{ \sqrt{3}  + 1 -  \sqrt{3}  + 1}{2}  \\  \\ \sf  \rightarrow  x =  \frac{2}{2}  \\  \\ \boxed{ \bf \therefore x = 1}

Hence, it's roots are √3 and 1.


sam9404: thanks
LovelyG: Welcome :)
Answered by gurpritjai
1

hope it helps

Tell me if you have any further query

Attachments:

sam9404: I not be able to understand the solution in starting what you do there
gurpritjai: okay
sam9404: your answer is also wrong
gurpritjai: okay I am sorry
Similar questions