Math, asked by kamble02nisha, 16 days ago

x²+(x+2)²=244 solve this problem​

Answers

Answered by sadnesslosthim
27

Given :-

\sf \bullet \;\; x^{2} + (x+2)^{2} = 244

Solution :-

\sf : \; \implies x^{2} + (x+2)^{2} = 244

~As we know that,  

     ( a + b )² = a² + b² + 2ab

\sf : \; \implies x^{2} + x^{2} + 4 + 4x = 244

\sf : \; \implies x^{2} + \{ x^{2} + 2^{2} + ( 2 \times 2 \times x ) \} = 244

\sf : \; \implies 2x^{2} + 4x + 4 -244 = 0

\sf : \; \implies 2x^{2} + 4x -240 = 0

~Dividing both sides of equation by 2

\sf : \; \implies \dfrac{2x^{2} + 4x -240}{2} = \dfrac{0}{2}

\sf : \; \implies x^{2} + 2x -120 = 0

\sf : \; \implies x^{2} -10x + 12x -120 = 0

\sf : \; \implies x( x-10 ) + 12(x-10 ) = 0

\sf : \; \implies ( x-10 )( x + 12 ) = 0

\sf : \; \implies x -10 = 0

\sf : \; \implies x = 0 + 10

\boxed{\bf{ \star \;\; x = 10 }}

    Or

\sf : \; \implies x +12 = 0

\sf : \; \implies x = 0-12

\boxed{\bf{ \star \;\; x = -12 }}

Answered by aayuvashu
0

Answer:

please mark above answer as brainliest

Step-by-step explanation:

Similar questions