(x²-x)²-8(x²-x)+12, Factorize the given polynomial.
Answers
Answered by
3
Let x^2 - x = a
= a^2 - 8a + 12
= a^2 - 6a - 2a + 12
= a(a-6) - 2(a-6)
= (a-6)(a-2)
= ( x^2 - x - 6)(x^2 - x - 2)
= [ x^2 - 3x + 2x - 6] [x^2 - 2x + x - 2]
= [ x(x-3) + 2(x-3)] [x(x-2) + 1(x-2)]
= (x-3)(x+2)(x+1)(x-2)
= a^2 - 8a + 12
= a^2 - 6a - 2a + 12
= a(a-6) - 2(a-6)
= (a-6)(a-2)
= ( x^2 - x - 6)(x^2 - x - 2)
= [ x^2 - 3x + 2x - 6] [x^2 - 2x + x - 2]
= [ x(x-3) + 2(x-3)] [x(x-2) + 1(x-2)]
= (x-3)(x+2)(x+1)(x-2)
Answered by
5
Given (x²-x)-8(x²-x)+12
Splitting the middle term,
= (x²-x)²-6(x²-x)-2(x²-x)+12
=(x²-x)[x²-x-6]-2[x²-x-6]
=(x²-x-6)(x²-x-2)
= [x²-3x+2x-6][x²-2x+x-2]
=[x(x-3)+2(x-3)][x(x-2)+1(x-2)]
=[(x-3)(x+2)][(x-2)(x+1)]
=(x-2)(x-3)(x+1)(x+2)
••••••
Similar questions