(x²-x)y²+y-(x²+x) solve in factorisation..
Answers
Answered by
27
(x²-x)y² + y - (x²+x)
= (x²-x)y² + (x²-x²+1)y - (x²+x)
= (x²-x)y² + x²y - (x²-1)y - (x²+x)
= x(x-1)y² + x²y - (x+1)(x-1)y - x(x+1)
= xy ((x-1)y + x) - (x+1) ((x-1)y + x)
= ((x-1)y + x) (xy - (x+1))
= (xy - y + x) (xy - x - 1)
= (x²-x)y² + (x²-x²+1)y - (x²+x)
= (x²-x)y² + x²y - (x²-1)y - (x²+x)
= x(x-1)y² + x²y - (x+1)(x-1)y - x(x+1)
= xy ((x-1)y + x) - (x+1) ((x-1)y + x)
= ((x-1)y + x) (xy - (x+1))
= (xy - y + x) (xy - x - 1)
Similar questions