(x² + xy) dy = (x² + y2) dx
Answers
.dx
.dxOn integration both side
.dxOn integration both side∴−∫1dv+2∫
.dxOn integration both side∴−∫1dv+2∫ 1−v
.dxOn integration both side∴−∫1dv+2∫ 1−v1
.dxOn integration both side∴−∫1dv+2∫ 1−v1
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −1
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v)
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v)
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1−
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− x
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy )+
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy )+ x
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy )+ xy
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy )+ xy
.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy )+ xy +c=0