Math, asked by sahilsunnysingh2004, 5 months ago

(x² + xy) dy = (x² + y2) dx​

Answers

Answered by Anonymous
4

.dx

.dxOn integration both side

.dxOn integration both side∴−∫1dv+2∫

.dxOn integration both side∴−∫1dv+2∫ 1−v

.dxOn integration both side∴−∫1dv+2∫ 1−v1

.dxOn integration both side∴−∫1dv+2∫ 1−v1

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −1

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v)

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v)

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1−

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− x

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy )+

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy )+ x

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy )+ xy

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy )+ xy

.dxOn integration both side∴−∫1dv+2∫ 1−v1 dv=∫ x1 dx⇒∴−v+ −12log e (1−v) =log e x+c⇒log e x+2log e (1−v)+v+c=0⇒log e x+2log e (1− xy )+ xy +c=0

Similar questions