x²+xy+x=14,y²+xy+y=28,Then find tge value of x+y.Please give correct answer
Answers
Answered by
6
x²+xy +x =14⇒x(x+y+1) =14
⇒x+y+1 = 14/x ---(1)
y²+xy+y =28⇒y(y+x+1) =28
⇒x+y+1 =28/y----(2)
therefore
(2) = (1)
28/y = 14/x
2/y =1/x
do the cross multiplication
2x = y ---(3)
put y= 2x in (1)
x+2x +1 =14/x
3x+1 =14/x
x(3x+1)=14
3x²+x-14=0
3x²+7x-6x -14=0
x(3x+7)-2(3x+7)=0
(3x+7)(x-2)=0
therefore
3x+7 =0 or x-2 =0
take x-2 =0
x=2
put x=2 in (3)
y=2x
y=2*2=4
therfore
x+y =2+4 =6
⇒x+y+1 = 14/x ---(1)
y²+xy+y =28⇒y(y+x+1) =28
⇒x+y+1 =28/y----(2)
therefore
(2) = (1)
28/y = 14/x
2/y =1/x
do the cross multiplication
2x = y ---(3)
put y= 2x in (1)
x+2x +1 =14/x
3x+1 =14/x
x(3x+1)=14
3x²+x-14=0
3x²+7x-6x -14=0
x(3x+7)-2(3x+7)=0
(3x+7)(x-2)=0
therefore
3x+7 =0 or x-2 =0
take x-2 =0
x=2
put x=2 in (3)
y=2x
y=2*2=4
therfore
x+y =2+4 =6
mysticd:
thank u selecting as brainliest
Answered by
3
There are two answers possible: -7 or 6.
x² + x y + x = 14
y² + x y + y = 28
Subtract both eq: y² - x² + y - x = 14
(y - x) (y + x + 1) = 14 --- (3)
Add both eq: (x + y)² + (x+y) = 42
(x+y) (x+y+1) = 42 --- (4)
(4) / (3) gives, (x+y+1 ≠ 0)
(x+y) / (y - x) = 3
so 2 y = 4 x
y = 2 x
Substitute in (1) to get: x² + 2 x² + x = 14
x = [-1 +- √(1 + 168) ]/6 = -7/3 or 2
Then y = -14/3 or 4
so x+y = 3 x = -7 or 6
x² + x y + x = 14
y² + x y + y = 28
Subtract both eq: y² - x² + y - x = 14
(y - x) (y + x + 1) = 14 --- (3)
Add both eq: (x + y)² + (x+y) = 42
(x+y) (x+y+1) = 42 --- (4)
(4) / (3) gives, (x+y+1 ≠ 0)
(x+y) / (y - x) = 3
so 2 y = 4 x
y = 2 x
Substitute in (1) to get: x² + 2 x² + x = 14
x = [-1 +- √(1 + 168) ]/6 = -7/3 or 2
Then y = -14/3 or 4
so x+y = 3 x = -7 or 6
Similar questions