Math, asked by AasthaLuthra, 1 year ago

2n < ( n + 2 )! for all natural number n. Prove by mathematical induction

Answers

Answered by BrainlyGood
1
Predicate statement P :  2 n < (n+2)!

For n = 1,     then 2 n = 2  and   (n+2)! = 3! = 6
    So P is true.

Let us say P is true for n = k.
 So  2 k < (k+2)!
       2 k (k+3) <  (k+2)!  (k+3) =  (k+3)!
       6 k + 2k^2 <  (k+3)! 
       2 (k+1) + 2(k^2+ 2k - 1) < (k+3)!

As  k^2 + 2k - 1  is always positive for any k >= 1,

       2 (k+1) < (k+3)!   or (k+1 +2)!
 
Hence P is true for all natural numbers n.
Similar questions