Math, asked by kanchanabandi2, 26 days ago

x2+y2=27, prove that 2log (x-y) =5log2+logx+logy​

Answers

Answered by tennetiraj86
2

Step-by-step explanation:

Given Question :-

x²+y² = 27, Prove that 2 log (x-y) = 5log2 + log x + log y

Correction :-

x²+y² = 27xy

Solution :-

Given equation is x²+y² = 27xy

On subtracting 2xy both sides then

=> x²+y² -2xy = 27xy -2xy

=> x²-2xy+y² = (27-2)xy

=> (x-y)² = 25xy

Since (a-b)² = a²-2ab+b²

Where , a = x and b = y

On taking Logarithms both sides

=> log (x-y)² = log 25xy

We know that

log a^m = m log a

=> 2 log (x-y) = log 25xy

=> 2 log (x-y) = log(5²×x×y)

We know that

log ab = log a + log b

=> 2 log (x-y) = log 5² + log x + log y

We know that

log a^m = m log a

=> 2 log (x-y) = 2 log 5 + log x + log y

Hence, Proved.

Answer:-

If x²+y² = 27xy then 2 log (x-y) = 2 log 5 + log x + log y

Used formulae:-

  • log ab = log a + log b

  • log a^m = m log a

  • (a-b)² = a²-2ab+b²
Answered by Teluguwala
2

Given :-

 \:

 \bf⟼ \:  \:  {x}^{2}  +  {y}^{2}  \:  =  \: 27

 \:

To Prove :-

 \:

 \bf⟼ \:  \: 2 \: log \:  (x-y)  \: = \: 5 \: log \: 2 \: + \: log \: x \: + \: log \: y

 \:

Solution :-

 \:

Given that,

 \:

 \bf⟼ \:  \:  {x}^{2}  +  {y}^{2}  \:  =  \: 27

 \:

 \bf⟼ \:  \:  {x}^{2}  +  {y}^{2}  \:  =  \: 27xy

 \:

Subtracting 2xy on both sides,

 \:

 \bf⟼ \:  \:  {x}^{2}   +  {y}^{2}   - 2xy\:  =  \: 27 xy- 2xy

 \:

 \bf⟼ \:  \:  ({x}    -   {y})^{2} \:  =  \: 25xy \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg( ∴( {a - b)}^{2}  \:  =  \:  {a}^{2}  +  {b}^{2}  - 2ab \bigg)

 \:

Adding log on both sides,

 \:

 \bf⟼ \:  \: log \:  ({x}    -   {y})^{2} \:  =  \: log \: 25xy

 \:

\bf⟼ \:  \: 2 \: log \:  ({x}    -   {y}) \:  =  \: log \:  {5}^{2}   \: + \:  log \: x  \: + \:  log \: y

 \:

\bf⟼ \:  \: 2 \: log \:  ({x}    -   {y}) \:  =  \: 2 \: log \:  {5}   \: + \:  log \: x  \: + \:  log \: y

 \:

Hence, proved !!!

 \:

Similar questions