x2+y3+2xy=4 find slop of tengent at point(1,1)
Answers
Answered by
0
the slope of a curve at a point on the curve is equal to the derivative dy/dx at the point.
[tex]x^2+y^3+2xy= 4\\\\differentiating\ wrt\ x:\\\\2x+3y^2\ y'+2x*y'+2y=0\\\\y'(3y^2+2x)=-2(x+y)\\\\y'=\frac{dy}{dx}=-2\frac{x+y}{3y^2+2x}\\\\substituting\ \ x=y=1\ \ at\ point\ (1,1),\ the\ slope\ is\\\\y'(1,1)=-2*\frac{1+1}{3+2}=-4/5[/tex]
..
[tex]x^2+y^3+2xy= 4\\\\differentiating\ wrt\ x:\\\\2x+3y^2\ y'+2x*y'+2y=0\\\\y'(3y^2+2x)=-2(x+y)\\\\y'=\frac{dy}{dx}=-2\frac{x+y}{3y^2+2x}\\\\substituting\ \ x=y=1\ \ at\ point\ (1,1),\ the\ slope\ is\\\\y'(1,1)=-2*\frac{1+1}{3+2}=-4/5[/tex]
..
Similar questions