Math, asked by bishal2013, 1 year ago

x3+1/x3+2 factorise it

Answers

Answered by vini80
67
a^3+b^3+c^3 -3.a.b.c=(a+b+c)(a^2+b^2+c^2-a.b-bc-ca)………….(1)

x^3 + 1/x^3 - 2

=x^3+1/x^3+1 -3

=(x)^3+(1/x)^3 +(1)^3–3.x.1/x.1

=(x+1/x+1)(x^2+1/x^2+1^2-x.1/x-1/x.1–1.x)

=(x+1/x+1)(x^2+1/x^2+1–1–1/x-x)

=(x+1/x+1)(x^2+1/x^2–1/x-x)

bishal2013: here is + sign before 2.
Answered by harendrachoubay
37

The factorisation of x^3+\dfrac{1}{x^3} +2 is[(x+\dfrac{1}{x})+1][(+\dfrac{1}{x})-1][(x+\dfrac{1}{x})-2].

Step-by-step explanation:

We have,

x^3+\dfrac{1}{x^3} +2                             ........ (1)

To find, the factorisation of x^3+\dfrac{1}{x^3} +2=?

We know that,

(x+\dfrac{1}{x})^3=x^{3}+\dfrac{1}{x^3}+3.x.\dfrac{1}{x}(x+\dfrac{1}{x})

(x+\dfrac{1}{x})^3=x^{3}+\dfrac{1}{x^3}+3(x+\dfrac{1}{x})

x^{3}+\dfrac{1}{x^3}=(x+\dfrac{1}{x})^3-3(x+\dfrac{1}{x})  ........ (2)

From (1) and (2),

x^3+\dfrac{1}{x^3} +2

=(x+\dfrac{1}{x})^3-3(x+\dfrac{1}{x})+2

Let x+\dfrac{1}{x}=a

=a^3-3a+2=a^3-2a-a+2

=a^{2}(a-2)-1(a-2)

=(a^{2}-1)(a-2)

=(a+1)(a-1)(a-2)

Using algebraic identity,

a^{2}-b^{2}=(a+b)(a-b)

Put x+\dfrac{1}{x}=a, we get

=[(x+\dfrac{1}{x})+1][(+\dfrac{1}{x})-1][(x+\dfrac{1}{x})-2]

Hence, the factorisation of x^3+\dfrac{1}{x^3} +2 is [(x+\dfrac{1}{x})+1][(+\dfrac{1}{x})-1][(x+\dfrac{1}{x})-2].

Similar questions