x³-64; x-4 Divide first polynomial by second polynomial and write the answer in the form ‘Dividend = Divisor ´ Quotient + Remainder’.
Answers
Answered by
39
(x^3 - 64) / (x-4)
= (x^3 - 4^3) / (x-4)
= (x-4)(x^2 + 16 - 8x) / (x-4)
= x^2 - 8x + 16
____________________
=> (x^3 - 64) = (x-4)(x^2 - 8x +16) + 0
= (x^3 - 4^3) / (x-4)
= (x-4)(x^2 + 16 - 8x) / (x-4)
= x^2 - 8x + 16
____________________
=> (x^3 - 64) = (x-4)(x^2 - 8x +16) + 0
Answered by
57
Given x³- 64 ÷ x - 4
x -4) x³ + 0 + 0 -64(x²+4x+16
***** x³ - 4x²
___________
********* 4x² + 0
******** 4x² - 16x
_____________
*****************16x - 64
***************** 16x- 64
_________________
Remainder ( 0 )
Dividend = x³ - 64
Divisor = ( x - 4 ) ,
Quotient = ( x² +4x+16 )
Remainder = 0
RHS=divisor×quotient+remainder
= (x-4)(x²+4x+16)+0
= x(x²+4x+16)-4(x²+4x+16)
= x³ + 4x² + 16x - 4x² - 16x - 64
= x³ - 64
= LHS
= Dividend
•••••
Similar questions