Math, asked by sahil2474, 1 year ago

(x6-y6) by (x-y)
  {x}^6{y {}^6{} }  by x - y

Answers

Answered by Anonymous
21
<u><b><huge>Hello<u><b><huge>

ANSWER:-

Using Some Property;

1) [x³-y³]

(x-y)(x²+x-y+y²)

2)[x³+y³]

(x+y)(x²-xy+y²)

Thanks!!!?
Attachments:

Mankuthemonkey01: ye second pic me kya ho raha hai xD
Anonymous: accha nahi laga kya
Mankuthemonkey01: xD but answer me?
Anonymous: Kuch nahi bo raha
Anonymous: bolo bhi
Mankuthemonkey01: kuchh nahi bhai. Great answer ☺️✌️
Anonymous: Thanks
Answered by Mankuthemonkey01
26
First of all, we should factorise the first polynomial in order to make it easier

So,
 {x}^{6}  -  {y}^{6}  \\  \\  =  > ( {x}^{3} ) {}^{2}  - (y {}^{3} ) {}^{2}  \\
now using, a² - b² = (a + b)(a - b)

we get,
( {x}^{3} ) {}^{2}  - ( {y}^{3} ){}^{2}   \\ \\  =  > ( {x}^{3}  -  {y}^{3} )( {x}^{3}  +  {y}^{3} )
now using the identity,

a³ + b³ = (a + b)(a² + b² - ab)

and

a³ - b³ = (a - b)(a² + b² + ab)

we get,

(x - y)( {x}^{2}  +  {y}^{2}  + xy)(x + y)( {x}^{2}  +  {y}^{2}   - xy)
we have to divide this by (x - y) right

So when dividing we get,

 \frac{(x - y)( {x}^{2} +  {y}^{2} + xy)(x  +  y)( {x}^{2}   +  {y}^{2}  - xy) }{(x - y)}

Cancellation of (x - y) in the denominator by the numerator we get,

( {x}^{2}  +  {y}^{2}  + xy)(x + y)( {x}^{2}  +  {y}^{2}  - xy) \\  \\ or \\  \\ ( {x}^{2}  +  {y}^{2}  + xy)( {x}^{3}  + y {}^{3} )
If you want to solve further,

( {x}^{2}  +  {y}^{2}  + xy)( {x}^{3}  + y {}^{3} ) \\  \\  =  >  {x}^{5}  +  {x}^{3}  {y}^{2}  +  {x}^{4} y +  {y}^{3}  {x}^{2}  +  {y}^{5}  +  {y}^{4} x
hope it helps dear friend ☺️

Anonymous: fabulous
Anonymous: Answer
Mankuthemonkey01: thanks bro
Anonymous: Fantastic ❤
Mankuthemonkey01: thanks
Similar questions