Math, asked by skmalaviya123, 4 months ago

(xdx -ydy) y sin y/x = ( ydx + xdx) x cos y/x​

Answers

Answered by shadowsabers03
4

Correct Question:-

Solve the differential equation (x\ dy-y\ dx)y\sin\left(\dfrac{y}{x}\right)=(y\ dx+x\ dy)x\cos\left(\dfrac{y}{x}\right).

Solution:-

We're given to solve the differential equation,

\longrightarrow(x\ dy-y\ dx)y\sin\left(\dfrac{y}{x}\right)=(y\ dx+x\ dy)x\cos\left(\dfrac{y}{x}\right)

Dividing by x^2 we get,

\longrightarrow\left(\dfrac{x\ dy-y\ dx}{x^2}\right)y\sin\left(\dfrac{y}{x}\right)=\left(\dfrac{y}{x}\ dx+dy\right)\cos\left(\dfrac{y}{x}\right)

Put,

\longrightarrow u=\dfrac{y}{x}

\longrightarrow du=\dfrac{x\ dy-y\ dx}{x^2}

Also,

\longrightarrow y=ux

\longrightarrow dy=u\ dx+x\ du

Then our equation becomes,

\longrightarrow ux\sin u\ du=\left(2u\ dx+x\ du\right)\cos u

\longrightarrow ux\sin u\ du=2u\cos u\ dx+x\cos u\ du

\longrightarrow ux\sin u\ du-x\cos u\ du=2u\cos u\ dx

\longrightarrow(u\sin u-\cos u)x\ du=2u\cos u\ dx

\longrightarrow\dfrac{dx}{x}=\left(\dfrac{u\sin u-\cos u}{2u\cos u}\right)\ du

\longrightarrow\dfrac{dx}{x}=\dfrac{1}{2}\left(\tan u-\dfrac{1}{u}\right)\ du

Now integrating,

\displaystyle\longrightarrow\int\dfrac{dx}{x}=\dfrac{1}{2}\int\left(\tan u-\dfrac{1}{u}\right)\ du

\displaystyle\longrightarrow\log|x|=\dfrac{1}{2}\left(\log|\sec u|-\log|u|\right)+\log|C_1|

\displaystyle\longrightarrow\log|x|=\dfrac{1}{2}\log\left|\dfrac{\sec u}{u}\right|+\log|C_1|

Taking antilog,

\displaystyle\longrightarrow x=C_1\sqrt{\dfrac{\sec u}{u}}

\displaystyle\longrightarrow x^2=\dfrac{(C_1)^2\sec u}{u}

\displaystyle\longrightarrow \sec u=\dfrac{ux^2}{(C_1)^2}

Taking (C_1)^2=\dfrac{1}{C},

\displaystyle\longrightarrow \sec u=Cux^2

Undoing substitution u=\dfrac{y}{x},

\displaystyle\longrightarrow\underline{\underline{\sec\left(\dfrac{y}{x}\right)=Cxy}}

Similar questions