Math, asked by aish5386, 11 months ago

xdy/dx + y = y² logx​

Answers

Answered by shadowsabers03
0

\displaystyle\large\boxed {\sf {y=\dfrac {1}{1+\log x}}}

Given,

\displaystyle\longrightarrow\sf{x\ \dfrac {dy}{dx}+y=y^2\log x}

Dividing each term by x, we get,

\displaystyle\longrightarrow\sf{\dfrac {dy}{dx}+\dfrac {y}{x}=\dfrac {y^2}{x}\log x}

But we have to make RHS in such a way that it should contain a function in x only, to get a linear differential equation. So, dividing each term in the equation by \displaystyle\sf {y^2,}

\displaystyle\longrightarrow\sf{\dfrac {1}{y^2}\cdot\dfrac {dy}{dx}+\dfrac {1}{xy}=\dfrac {1}{x}\log x\quad\quad\dots (1)}

Let,

\displaystyle\longrightarrow\sf{du=\dfrac {1}{y^2}\ dy}

\displaystyle\longrightarrow\sf{u=\int\dfrac {1}{y^2}\ dy}

\displaystyle\longrightarrow\sf{u=\dfrac {y^{-1}}{-1}}

[no integral constant is considered or it is taken as zero.]

\displaystyle\longrightarrow\sf{-u=\dfrac {1}{y}}

Then (1) becomes,

\displaystyle\longrightarrow\sf{\dfrac {du}{dx}-\dfrac {u}{x}=\dfrac {1}{x}\log x}

Now it is being a linear differential equation in the form \displaystyle\sf{\dfrac {du}{dx}+Pu=Q} where \displaystyle\sf {P=-\dfrac {1}{x}} and \displaystyle\sf {Q=\dfrac {1}{x}\log x.}

Then, multiply each term by \displaystyle\sf {f(x).}

\displaystyle\longrightarrow\sf{f(x)\cdot\dfrac {du}{dx}+P\cdot f(x)\cdot u=Q\cdot f(x)\quad\quad\dots (2)}

Choose \displaystyle\sf {f(x)} such that \displaystyle\sf {Q\cdot f(x)=\dfrac {d}{dx}[u\cdot f(x)],} i.e.,

\displaystyle\longrightarrow\sf{f(x)\cdot\dfrac {du}{dx}+P\cdot f(x)\cdot u=\dfrac {d}{dx}[u\cdot f(x)]}

\displaystyle\longrightarrow\sf{f(x)\cdot\dfrac {du}{dx}+P\cdot f(x)\cdot u=f(x)\cdot\dfrac {du}{dx}+u\cdot\dfrac {d}{dx}[f(x)]}

\displaystyle\longrightarrow\sf{P\cdot f(x)=\dfrac {d}{dx}[f(x)]\quad\quad\dots (i)}

Then in (2),

\displaystyle\longrightarrow\sf{f(x)\cdot\dfrac {du}{dx}+\dfrac {d}{dx}[f(x)]\cdot u=Q\cdot f(x)}

\displaystyle\longrightarrow\sf{\dfrac {d}{dx}[u\cdot f(x)]=Q\cdot f(x)}

\displaystyle\longrightarrow\sf{u\cdot f(x)=\int Q\cdot f(x)\ dx}

\displaystyle\longrightarrow\sf{u=\dfrac {1}{f(x)}\int Q\cdot f(x)\ dx\quad\quad\dots (3)}

From (i),

\displaystyle\longrightarrow\sf{P=\dfrac {\dfrac {d}{dx}[f(x)]}{f(x)}}

On integrating each term wrt x, we get,

\displaystyle\longrightarrow\sf{\int P\ dx=\log (f(x))}

\displaystyle\longrightarrow\sf{f(x)=e^{\int P\ dx}}

Thus (3) becomes,

\displaystyle\longrightarrow\sf{u=e^{-\int P\ dx}\int\left (Q\cdot e^{\int P\ dx}\right)\ dx}

Undo \displaystyle\sf {u=-\dfrac {1}{y},\ P=-\dfrac {1}{x}} and \displaystyle\sf {Q=\dfrac {1}{x}\log x.} Then,

\displaystyle\longrightarrow\sf{-\dfrac {1}{y}=e^{\int\frac {1}{x}\ dx}\int\left (\dfrac {1}{x}\log x\cdot e^{-\int\frac {1}{x}\ dx}\right)\ dx}

\displaystyle\longrightarrow\sf{-\dfrac {1}{y}=e^{\log x}\int\left (\dfrac {1}{x}\log x\cdot e^{-\log x}\right)\ dx}

\displaystyle\longrightarrow\sf{-\dfrac {1}{y}=x\int\left (\dfrac {1}{x}\log x\cdot\dfrac {1}{x}\right)\ dx}

\displaystyle\longrightarrow\sf{-\dfrac {1}{y}=x\int\left (\dfrac {1}{x^2}\log x\right)\ dx\quad\quad\dots (4)}

Well, by product rule,

\displaystyle\longrightarrow\sf{\int\dfrac {1}{x^2}\log x\ dx=-\dfrac {1}{x}\log x+\int\dfrac {1}{x}\cdot\dfrac {1}{x}\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac {1}{x^2}\log x\ dx=-\dfrac {1}{x}\log x+\int\dfrac {1}{x^2}\ dx}

\displaystyle\longrightarrow\sf{\int\dfrac {1}{x^2}\log x\ dx=-\dfrac {1}{x}\log x-\dfrac {1}{x}}

\displaystyle\longrightarrow\sf{\int\dfrac {1}{x^2}\log x\ dx=-\dfrac {1}{x}[1+\log x]}

Then (4) becomes,

\displaystyle\longrightarrow\sf{-\dfrac {1}{y}=-x\cdot\dfrac {1+\log x}{x}}

\displaystyle\longrightarrow\sf {\underline {\underline {y=\dfrac {1}{1+\log x}}}}

Similar questions