Math, asked by adarshmishra92, 11 months ago

XIV. If Sn denotes the sum of the first n terms of an A.P.prove that S12=3(S8- S4)​

Answers

Answered by kramitnits
2

Step-by-step explanation:

Let a A.P is defined such that the the first term is a and the common difference is d

The sum n terms of am A.P is given by

S_n=\dfrac{n}{2}(2a+(n-1)d)\\\\S_{12}=\dfrac{12}{2}(2a+(12-1)d)\\\\S_{12}=12a+66d

Similarly

S_n=\dfrac{n}{2}(2a+(n-1)d)\\\\S_{8}=\dfrac{8}{2}(2a+(8-1)d)\\\\S_{8}=8a+28d

S_n=\dfrac{n}{2}(2a+(n-1)d)\\\\S_{4}=\dfrac{4}{2}(2a+(4-1)d)\\S_4=4a+6d

Now we have

3(S_8-S_4)=3(8a+28d-4a-6d)=12a+66d

So From above It is proved that

s_{12}=3(S_8-S_4)

Answered by Anonymous
0

 \Large \bf Solution :

Let the first term be a and common difference be d.

We have to prove :  \sf S_{12} = 3(S_{8} - S_{4})

 \underline {\bf In \: RHS, \: we \: have :} \sf 3(S_{8} - S_{4})

Now,

 \underline{\boxed{\sf S_{n} = \dfrac{n}{2} . [2a+(n-1)d]}}

 \sf : \implies 3 \Bigg[\dfrac{8}{2}(2a+(8-1)d) - \dfrac{4}{2}(2a+(4-1)d)\Bigg]

 \sf : \implies 3 \Bigg[\cancel{\dfrac{8}{2}}(2a+7d) - \cancel{\dfrac{4}{2}}(2a+3d)\Bigg]

 \sf : \implies 3 [4(2a+7d) - 2(2a+3d)]

 \sf : \implies 3 \times 2[2(2a+7d) - (2a+3d)]

 \sf : \implies 6(4a+14d - 2a+3d)

 \sf : \implies 6(2a+11d)

 \underline {\bf In \: LHS, \: we \: have :} \sf S_{12}

Now,

 \underline{\boxed{\sf S_{n} = \dfrac{n}{2} . [2a+(n-1)d]}}

 \sf : \implies \dfrac{12}{2} (2a + (12-1)d)

 \sf : \implies \cancel{\dfrac{12}{2}} (2a + 11d)

 \sf : \implies 6 (2a + 11d)

 \bf As, \: LHS = RHS,

 \underline{\underline{\bf Hence, \: Proved.}}

Similar questions