Chemistry, asked by nidhiyadav6436, 1 year ago

xlogy-logz. ylogz-logx. zlogx-logy=1

Answers

Answered by roshinik1219
9

Given:

       x^{log \ y - log z} \times y^{log z - log x} \times z^{log x - log y}

To Prove:

     x^{log y - log z} \times  y^{log z - log x} \times z^{log x - log y} = 1\\

Solution:

Let

     x^{log y - log z} \times  y^{log z - log x} \times z^{log x - log y} = k

Taking log on both hand side we get

log k = log [x^{log y - log z} \times  y^{log z - log x} \times z^{log x - log y} ]

log k = log \ x^{log y - log z} + log \ y^{log z - log x} + log \ z^{log x - log y}                                      

We know  log ( a \times  b )  = log \ a  + log \ b

log k =( log y - log z) \ log (x) +(log z - log x)\ log( y) + (log\ x - log\ y) \ log ( z)                

We know log ( a^ b )  = b \ log a

⇒  log k =log x \log y - log x \ log z+ log y\ log z - log x \ log y + log x\ log z - log y\ log z

⇒  log k =0

⇒   k = e^0          

We know    log_a x = c \\So\  x = a^c

⇒      k = 1                                                                                                                        We know    (Anything )^0 = 1

Therefore,

      x^{log y - log z} \times  y^{log z - log x} \times z^{log x - log y} = 1\\

Hence proved                                            

Similar questions