Xsum of 2 digit number & the numerator obtained by reversing the digits is 154 .if the digit differ by 4
Answers
Correct Question :
The sum of 2 digits number & the number obtained by reversing the digits is 154 .If the digit differ by 4. Find the Original Number.
AnswEr :
Let the Unit Digit be x and, Ten's Digit be y
- Original No. = (10y + x)
- Reversed No. = (10x + y)
Let the Greater Number be x
Then, Digits Differ by 4
↠ Greater No. - Smaller No. = 4
↠ x - y = 4
↠ x = 4 + y ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀—eq.( I )
_______________________________
• According to the Question Now :
⇒ Original No. + Reversed No. = 154
⇒ (10y + x) + (10x + y) = 154
⇒ 11y + 11x = 154
⇒ 11(y + x) = 154
- Dividing both term by 11
⇒ (y + x) = 14
- putting the value of x from eq.( I )
⇒ (y + 4 + y) = 14
⇒ 2y + 4 = 14
⇒ 2y = 14 - 4
⇒ 2y = 10
- Dividing both term by 2
⇒ y = 5
• Putting the value of y in eq.( I ) :
↦ x = 4 + y
↦ x = 4 + 5
↦ x = 9
_______________________________
• O R I G I N A L ⠀N U M B E R :
◗ (10y + x)
◗ 10(5) + 9
◗ 50 + 9
◗ 59
∴ Therefore, Original Number is 59.
━━━━━━━━━━━━━━━━━━━━━━━━
• V E R I F I C A T I O N :
⇒ Original No. + Reversed No. = 154
⇒ (10y + x) + (10x + y) = 154
⇒ [ 10(5) + 9 ] + [ 10(9) + 5 ] = 154
⇒ [ 50 + 9 ] + [ 90 + 5 ] = 154
⇒ 59 + 95 = 154
⇒ 154 = 154 ⠀⠀⠀⠀⠀⠀Hence, Verified!
#answerwithquality #BAL
Answer:
10x+y+10+y=154
11x+11y=154
x+y=14
x-y=4
2x=18
x=9
y=5