xy + x + y = 0 = yl
Example
x
differentiating both sides w.r.t. x, we get
y=-
1 + x
1
(1 + x)2
Solution
Diff
(1 + x).1 - x. (0+1)
(1 + x)2
dy
dx
that
dy
dx
cos? (a + y)
sin a
Example 11. If cos y = x cos (a + y), prove
COS Y
cos (a + y)
Solution. Given cos y = x cos (a + y) => x =
dx
cos (a + y) (-sin y) – cos y (-sin (a + y))
cos2 (a + y)
=
dy
sin (a + y) cos y - cos (a + y) sin y
cos2 (a + y)
sin (a + y - y).
cos? (a + y)
sina
cos² (aty)
SO
dy
dx
cos2 (a + y)
sin a
=
U
COS2(a + y). Also, show that dy
dy
Example 12. If sin y = x cos (a + y), then show that
dx
COS a
x = 0
Solution. Given sin y = x cos (a + y)
Differentiating both sides w.r.t. y, regarding x as a function of y, we get
Answers
Answered by
0
Answer:
nise questions hai bhai
Similar questions