Math, asked by rekhaa10, 1 year ago

XY/X+Y=20,YZ/Y+Z =40,ZX/Z+X=24​? Solve...Find X,Y,Z


Please Answer The Question

Answers

Answered by rishu6845
33

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by hukam0685
2

Values are \bf x = 30, \: y = 60 , \:  \text{and} \: z = 120

Given:

  •  \frac{xy}{x + y}  = 20 \\
  •  \frac{yz}{y + z}  = 40\\
  •  \frac{zx}{z + x}  = 24 \\

To find:

  • Find the values of x,y and z.

Solution:

Concept to be used:

Reciprocal each equation and simplify.

Step 1:

Reverse each equation.

 \frac{x + y}{xy}  =  \frac{1}{20}  \\

or

 \frac{x}{xy}  +  \frac{y}{xy}  =  \frac{1}{20}  \\

or

 \frac{1}{y}  +  \frac{1}{x}  =  \frac{1}{20}  \\

or

 \bf \frac{1}{x}  +  \frac{1}{y}  =  \frac{1}{20} ...eq1 \\

by the same way

 \bf \frac{1}{y}  +  \frac{1}{z}  =  \frac{1}{40} ...eq2 \\

and

\bf \frac{1}{x} +  \frac{1}{z}   =  \frac{1}{24} ...eq3 \\

Step 2:

Add eq1, 2 and 3.

\frac{1}{x}  +  \frac{1}{y} +  \frac{1}{y}  +  \frac{1}{z}  + \frac{1}{z}  +  \frac{1}{x}   = \frac{1}{20}  +  \frac{1}{40}  +  \frac{1}{24} \\

or

2 \left(\frac{1}{x}  +  \frac{1}{y} +  \frac{1}{z}  \right)  = \frac{1}{20}  +  \frac{1}{40}  +  \frac{1}{24} \\

take LCM in RHS

LCM(20,40,24)=120

2 \left(\frac{1}{x}  +  \frac{1}{y} +  \frac{1}{z}  \right)  = \frac{6 + 3 + 5}{120}  \\

or

\bf \frac{1}{x}  +  \frac{1}{y} +  \frac{1}{z}   = \frac{7}{120}...eq4  \\

Step 3:

Subtract eq1 from eq4.

\frac{1}{x}  +  \frac{1}{y} +  \frac{1}{z}  - \frac{1}{x}   -   \frac{1}{y} = \frac{7}{120} -  \frac{1}{20}   \\

or

 \frac{1}{z}= \frac{7 - 6}{120}  \\

or

\frac{1}{z}= \frac{1}{120}  \\

or

\bf z = 120 \\

Step 4:

Subtract eq2 from eq4.

\frac{1}{x}  +  \frac{1}{y} +  \frac{1}{z}  - \frac{1}{y}   -   \frac{1}{z} = \frac{7}{120} -  \frac{1}{40}   \\

or

 \frac{1}{x}  =  \frac{7 - 3}{120}  \\

or

 \frac{1}{x}  =  \frac{4}{120}  \\

or

\bf x = 30 \\

Step 5:

Subtract eq3 from eq4.

\frac{1}{x}  +  \frac{1}{y} +  \frac{1}{z}  - \frac{1}{x}   -   \frac{1}{z} = \frac{7}{120} -  \frac{1}{24}   \\

or

 \frac{1}{y}  =  \frac{7 - 5}{120}  \\

or

 \frac{1}{y}  =  \frac{2}{120}  \\

or

\bf y = 60 \\

Thus,

Values are \bf x = 30, \: y = 60 , \:  \text{and} \: z = 120

Learn more:

1) x+y+z=6 and xy+yz+zx=9 and xyz=1 then what is the value of (1/1-x)+(1/1-y)+(1/1-z)

https://brainly.in/question/1731472

2) 148x+231y=527 231x+148y=610 find x and y?

https://brainly.in/question/707780

Similar questions