xy(z²+1)+z(x²+y²) can be factorised
Answers
Answered by
73
xyz^2 + xy + zx^2 + zy^2
= xyz^2 + zx^2 + xy + zy^2
= xz(yz + x) +y(zy + x)
= (yz + x)(xz + y)
= xyz^2 + zx^2 + xy + zy^2
= xz(yz + x) +y(zy + x)
= (yz + x)(xz + y)
Answered by
31
hey...
xy(z^2+1) + z(x^2+y^2)
xyz^2 + xy + zx^2 + y^2
xyz^2 + zx^2 + xy + zy^2
xz(yz+x) + y(x+zy)
(xz+y)(yz+x)
xy(z^2+1) + z(x^2+y^2)
xyz^2 + xy + zx^2 + y^2
xyz^2 + zx^2 + xy + zy^2
xz(yz+x) + y(x+zy)
(xz+y)(yz+x)
Similar questions