Math, asked by nkumar77, 10 months ago

XYZ is an equilateral triangle wil
angle with side 10 cm. If OP=3 cm, find the area of the shaded region correct to decimal places.

Answers

Answered by amirgraveiens
14

Area of the shaded region is 5(5\sqrt{3}-3 ).

Step-by-step explanation:

Given:

Here, XYZ is an equilateral triangle.

So, XY =YZ = XZ =10 cm

Now,

Area of Δ XYZ = \frac{\sqrt{3} }{4} \times (side)^2

                        = \frac{\sqrt{3} }{4} \times (10)^2

                        = \frac{\sqrt{3} }{4} \times 100

                        = \sqrt{3}\times 25

                        = 25\sqrt{3} cm^2

As shon in the figure, in Δ OYZ

we have, base = YZ = 10 cm and height = OP = 3 cm

Now,

Area of Δ OYZ = \frac{1}{2}\times base \times height

                         = \frac{1}{2}\times YZ \times OP

                         = \frac{1}{2}\times 10 \times 3

                         =  5\times 3

                        =  15 cm^2

So,

Area of the shaded region = Area of Δ XYZ - Area of Δ OYZ

                                              = 25\sqrt{3} - 15

                                             = 5(5\sqrt{3}-3 )

                 

Attachments:
Answered by rs7279232
1

Answer:

ANSWER IS 150 BUT I DON'T KNOW HOW.

Similar questions