y=1+sinx-cosx÷1+sinx+cosx then y2= plz send me fast
Answers
Answered by
0
Step-by-step explanation:
y=1+sinx-cosx÷1+sinx+cosx
y=(1+sinx-cosx÷1+sinx+cosx )(1+sinx-cosx÷1+sinx-cosx )
=(1+sinx-cosx)^2 ÷((1+sinx)^2 - (cosx )^2)
=(1+sin^2x+cos^2x+2sinx-2sinxcosx-2cosx)÷(1+sin^2x+2sinx-cos^2x)
=(1+1+2sinx-2sinxcosx-2cosx)÷(sin^2x+sin^2x+2sinx)
since sin^2x+cos^2x=1, 1-cos^2x=sin^2x
=(2+2sinx-2sinxcosx-2cosx)÷(2sin^2x+2sinx)
=(2(1+sinx)-2cosx(1+sinx))÷2sinx(sinx+1)
=2(1+sinx)(1-cosx)÷2sinx(1+sinx)
=(1-cosx)/sinx
y^2=((1-cosx)/sinx)^2
=(1-cosx)^2/sin^2x
=(1-cos)^2/(1-cos^2x )
=(1-cosx)(1-cosx) / ( 1-cosx)(1+cosx)
=(1-cosx)/(1+cosx)
Similar questions