Math, asked by ujtojjfdf1434, 1 year ago

Y^2+1/2y-1=0 solve by completing square

Answers

Answered by Anonymous
3

SOLUTION:-

Completing square method;

 {y}^{2}  +  \frac{1}{2} y - 1 = 0 \\  \\   =  >  {y}^{2}  +  \frac{1}{2} y = 1 \\  \\    =  >  {y}^{2} + 2 \times  \frac{1}{4}  y = 1 \\  \\  =  >  {y}^{2}  + 2 \times  \frac{1}{4} y + ( \frac{1}{4} ) {}^{2}  = 1 + ( \frac{1}{4} ) {}^{2}  \\  \\  =  > (y +  \frac{1}{4} ) {}^{2}  = 1 +  \frac{1}{16}  \\  \\  =  > (y +  \frac{1}{4} ) {}^{2}  =  \frac{16 + 1}{16}  \\  \\  =  > (y +  \frac{1}{4} ) {}^{2}  =  \frac{17}{16}  \\  \\  =  > (y +  \frac{1}{4}) =  \frac{ \sqrt{17} }{4}   \\  \\  =  > (y +  \frac{1}{4} ) =  \frac{ \sqrt{17} }{4}  \:  \:  \: and \:  \: (y +  \frac{1}{4} ) =  -  \frac{ \sqrt{17} }{4} \\  \\  =  > y =  \frac{ \sqrt{17} }{4}   -  \frac{1}{4}  \:  \:  \:  \: and \:  \:  \: y =  -  \frac{ \sqrt{17} }{4}  -  \frac{1}{4}  \\  \\  =  > y =  \frac{ \sqrt{17} - 1 }{4}  \:  \:  \: and \:  \:  \: y =  -\frac{ \sqrt{17} + 1 }{4}

Hope it helps ☺️

Similar questions