y^2-38y-1575=0
by completing square
Answers
Answered by
4
Solution for x2-38x-1575=0 equation:
x2-38x-1575=0
We add all the numbers together, and all the variables
x^2-38x-1575=0
a = 1; b = -38; c = -1575;
Δ = b2-4ac
Δ = -382-4·1·(-1575)
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
x_{1}=\frac{-b-\sqrt{\Delta}}{2a}x_{2}=\frac{-b+\sqrt{\Delta}}{2a}
\sqrt{\Delta}=\sqrt{7744}=88
x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-88}{2*1}=\frac{-50}{2}
=-25
x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+88}{2*1}=\frac{126}{2}
=63
Similar questions