Math, asked by IsrarAhmed, 9 months ago

y_(2) :- d^2y/dx^2
y_(1) :- dy/dx

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

2y =  \sqrt{x + 1}  +  \sqrt{x - 1}

Differentiating both sides,

2 \:   y_{1} =  \frac{1}{2 \sqrt{x + 1} }  +  \frac{1}{2 \sqrt{x - 1} }

 =  > 2  \: y_{1} =  \frac{ \sqrt{x + 1}  +  \sqrt{x - 1} }{2 \sqrt{ {x}^{2} - 1 } }

 =  > 2 \:  y_{1} =  \frac{2y}{2 \sqrt{ {x}^{2} - 1 } }

 =  > 2 \:  y_{1} =  \frac{y}{ \sqrt{ {x}^{2}  - 1} }

Differentiating both sides,

Similar questions