Math, asked by sanjaydasari799, 6 months ago

y=2^x 3^2x 5^-x. 7^-x then dy\ dx=​

Answers

Answered by pulakmath007
27

SOLUTION

GIVEN

 \sf{}y =  {2}^{x}  .  {3}^{2x}  .  {5}^{ - x}  .  {7}^{ - x}

TO DETERMINE

 \displaystyle \sf{} \frac{dy}{dx}

FORMULA TO BE IMPLEMENTED

 \sf{} 1. \:  \: {a}^{m}  \times  {b}^{m}  =  {(ab)}^{m}

 \displaystyle \sf{}2. \:  \:  \frac{d}{dx} ( {a}^{x} ) =  {a}^{x}   \log a

EVALUATION

Here it is given that

 \sf{}y =  {2}^{x}  .  {3}^{2x}  .  {5}^{ - x}  .  {7}^{ - x}

 \implies \sf{}y =  {2}^{x}  .  {( {3}^{2} )}^{x}  .  { ({5}^{ - 1}) }^{ - x}  .  {( {7}^{ - 1}) }^{ x}

 \displaystyle \implies \sf{}y =  {2}^{x}  .  {9}^{x}  .  {  \bigg( \frac{1}{5}  \bigg) }^{ x}  .   {  \bigg( \frac{1}{7}  \bigg) }^{ x}

 \displaystyle \implies \sf{}y =  {(2 \times 9 )}^{x}  . {  \bigg( \frac{1}{5}   \times  \frac{1}{7} \bigg) }^{ x}

 \displaystyle \implies \sf{}y =  {(18)}^{x}  . {  \bigg( \frac{1}{35}  \bigg) }^{ x}

 \displaystyle \implies \sf{}y = {  \bigg( \frac{18}{35}  \bigg) }^{ x}

Differentiating both sides with respect to x we get

 \displaystyle \sf{} \frac{dy}{dx}  = {  \bigg( \frac{18}{35}  \bigg) }^{ x}  \log \bigg( \frac{18}{35}  \bigg)

FINAL ANSWER

 \boxed{ \displaystyle \sf{} \:  \:  \frac{dy}{dx}  = {  \bigg( \frac{18}{35}  \bigg) }^{ x}  \log \bigg( \frac{18}{35}  \bigg) \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Solve the differential equation :-

(cosx.cosy - cotx) dx - (sinx.siny) dy=0

https://brainly.in/question/23945760

Similar questions