Math, asked by Godardhanusha, 6 days ago

y=2x+2and y=3x-1 show equation in graph​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given pair of line is

\rm \: y = 2x + 2 -  -  - (1) \\

and

\rm \: y = 3x - 1 -  -  -  - (2) \\

Now, Consider Equation (1)

\rm \: y = 2x + 2 \\

Substituting 'x = 0' in the given equation, we get

\rm \: y = 2 \times 0 + 2 \\

\rm \: y = 0 + 2 \\

\rm\implies \:y = 2 \\

Substituting 'x = 1' in the given equation, we get

\rm \: y = 2 \times 1 + 2 \\

\rm \: y = 2 + 2 \\

\rm\implies \:y = 4 \\

Substituting 'x = 2' in the given equation, we get

\rm \: y = 2 \times 2 + 2 \\

\rm \: y = 4 + 2 \\

\rm\implies \:y = 6 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 2 \\ \\ \sf 1 & \sf 4 \\ \\ \sf 2 & \sf 6 \end{array}} \\ \end{gathered} \\

Now, Consider Equation (2)

\rm \: y = 3x - 1 \\

Substituting 'x = 0' in the given equation, we get

\rm \: y = 3 \times 0 - 1 \\

\rm \: y = 0 - 1 \\

\rm\implies \:y =  - 1 \\

Substituting 'x = 1' in the given equation, we get

\rm \: y = 3 \times 1 - 1 \\

\rm \: y = 3 - 1 \\

\rm\implies \:y = 2 \\

Substituting 'x = 2' in the given equation, we get

\rm \: y = 3 \times 2 - 1 \\

\rm \: y = 6 - 1 \\

\rm\implies \:y = 5 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 1 \\ \\ \sf 1 & \sf 2 \\ \\ \sf 2 & \sf 5 \end{array}} \\ \end{gathered} \\

➢ Now draw a graph using the points

➢ See the attachment graph.

From, graph we concluded that, given system of equations is consistent having unique solution and is given by

\begin{gathered}\begin{gathered}\bf\: \begin{cases} &\sf{x = 3} \\ \\  &\sf{y = 8} \end{cases}\end{gathered}\end{gathered} \\

Attachments:
Similar questions