(y-2z)the whole square with explanation
Answers
Correct Question:
We have to evaluate it.
Use (a – b)^2 identity to solve it.
Since (a – b)^2 = a^2 + 2ab + b^2
Hence, y^2 + 4yz + 4z^2 is the solution.
Some algebraic Identities:
→ (a + b)^2 = a^2 + 2ab + b^2
→ (a – b)^2 = a^2 – 2ab + b^2
→ a^2 – b^2 = (a + b) (a – b)
→ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
→ (a + b – c)^2 = a^2 + b^2 + c^2 + 2ab – 2bc – 2ca
→ (a – b – c)^2 = a^2 + b^2 + c^2 – 2ab + 2bc – 2ca
→ (a + b)^3 = a^3 + b^3 + 3ab(a + b)
→ (a – b)^3 = a^3 – b^3 – 3ab(a – b)
→ (a^3 + b^3) = (a + b) (a^2 – ab + b^2)
→ (a^3 – b^3) = (a – b) (a^2 + ab + b^2)
Some algebraic Identities:
→ (a + b)^2 = a^2 + 2ab + b^2
→ (a – b)^2 = a^2 – 2ab + b^2
→ a^2 – b^2 = (a + b) (a – b)
→ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
→ (a + b – c)^2 = a^2 + b^2 + c^2 + 2ab – 2bc – 2ca
→ (a – b – c)^2 = a^2 + b^2 + c^2 – 2ab + 2bc – 2ca
→ (a + b)^3 = a^3 + b^3 + 3ab(a + b)
→ (a – b)^3 = a^3 – b^3 – 3ab(a – b)
→ (a^3 + b^3) = (a + b) (a^2 – ab + b^2)
→ (a^3 – b^3) = (a – b) (a^2 + ab + b^2)