Math, asked by jambirasirka005, 11 months ago

y^3+2xy=5 find dy/dx ​

Answers

Answered by kaushik05
116

 \huge \mathfrak{solution}

 \boxed{ \bold{ {y}^{3}  + 2xy = 5}}

Differentiate both side w.r.t X

 \implies \:  \frac{d}{dx}  ({y}^{3}  + 2xy) =  \frac{d}{dx} (5) \\  \\  \implies \: 3 {y}^{3 - 1}  \frac{dy}{dx}  + 2(x \frac{dy}{dx}  + y) = 0 \\  \\  \implies \: 3 {y}^{2}  \frac{dy}{dx}  + 2x \frac{dy}{dx}  + 2y = 0 \\  \\  \implies \: (3 {y}^{2}  + 2x) \frac{dy}{dx}  =  - 2y \\  \\  \implies \:  \frac{dy}{dx}  =    \boxed{\bold{ \pink{\frac{ - 2y}{3 {y}^{2} + 2x } }}}

Formula used :

 \star \: \boxed{ \red{ \bold{\frac{d}{dx}  {x}^{n}  = n {x}^{n - 1} }}} \\  \\

 \star  \boxed{ \bold{ \red{\frac{d}{dx} (u.v) = u \:  \frac{dv}{dx}  + v \:  \frac{du}{dx} }}}

Similar questions