Math, asked by gameryoyo944, 5 months ago

y=3x2+2x+6 then dy/dx=​

Answers

Answered by Anonymous
2

{ \large{ \rm{ \bold{Hola!}}}}

GIVEN :

 \mapsto \sf \: y = 3 {x}^{2}  + 2x + 6

_____________________________________________

SOLUTION :

 \sf \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:  \: y \:  = 3 {x}^{2}  + 2x + 6

 \implies \sf \:  \frac{dy}{dx}  =  \frac{d}{dx} (3 {x}^{2}  + 2x + 6) \\

 \implies \sf \:  \frac{dy}{dx}  =  \frac{d}{dx} (3 {x}^{2} ) +  \frac{d}{dx} (2x) +  \frac{d}{dx} (6) \\

 \implies \sf \:  \frac{dy}{dx}  =  6x +  2+  0 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \therefore  { \underline{\boxed{\bold{\sf \:  \frac{dy}{dx}  =  6x +  2} }}} \\

_______________________________________________

REQUIRED CONCEPTS :

 \sf \mapsto \:   \frac{d}{dx}  ( {x}^{n} )=  n \: {a}^{n - 1}  \\

  \mapsto \: \sf \frac{d}{dx} (c) = 0 \\

_______________________________________________

CONCEPT BOOSTER :

  \sf  1)  \:  \: \frac{d}{dx} ( \sin \: x) =  \cos \: x \\

 \sf  2)  \frac{d}{dx} ( \cos \: x) =  -  \sin \: x \\

 \sf </u><u> 3) \:  \:  \frac{d}{dx} ( \tan \: x) =  { \sec}^{2} x \\

 \sf  4) \:  \:  \frac{d}{dx}( \cot \: x) =  -  { \cosec}^{2} x \\

 \sf 5) \:  \:  \frac{d}{dx} ( \sec \: x) =  \sec \: x  \: \tan \: x \\

 \sf 6) \:  \:  \frac{ d}{dx}  \cosec \: x =  -  \cosec \: x \cot \: x \\

 \sf</u><u> 7) \:  \:  \frac{d}{dx} ( {e}^{x} ) =  {e}^{x}  \\

 \sf 8) \:  \:  \: \: \frac{d}{dx} ( log \: x) =  \frac{1}{x} \:  \:  \:  [ \: x \not = 0] \\

 \sf 9) \:  \:  \frac{d}{dx} (u±v±w ±...) =  \frac{d}{dx} u± \frac{d}{dx} v± \frac{d}{dx} w±... \\

 \sf  10) \:  \:  \frac{d}{dx} (uv) = u \frac{dv}{dx}  + v \frac{du}{dx}  \\

 \sf 11) \:  \:  \frac{d}{dx} ( \frac{u}{v} ) =  \frac{v \frac{du}{dx}  - u \frac{dv}{dx} }{ {v}^{2} }  \\

__________________________________

HAVE A WONDERFUL DAY

Similar questions