Physics, asked by PrajwalR9340, 1 year ago

(y^4+2y)dx + (xy^3 + 2y^4 -4x)dy = 0

Answers

Answered by AbhiiitMishra
19

Explanation:

by non-exact differential equation we can easily solve this question.

Attachments:
Answered by dreamrob
4

Given,

(y^{4} +2y)dx + (xy^{3} +2y^{4} -4x)dy= 0

To Find,

Find the simplify form of this equation

Solution,

(y^{4} +2y)dx + (xy^{3} +2y^{4} -4x)dy= 0

or, (y^{4} +2y)dx= - (xy^{3} +2y^{4} -4x)dy

or, \frac{dx}{dy} = \frac{-(xy^{3} +2y^{4} -4x)}{(y^{4}+2y) } \\or, We know that, \frac{u}{v} = \frac{u'v-uv'}{v^{2} }

So, \frac{dx}{dy} = (y^{4} +2y)*( -xy^{3} -2y^{4} +4x)' - (-xy^{3} -2y^{4} +4x)*(y^{4} +2y)'/(y^{4} +2y)^{2}

or, = \frac{(y^{4}+2y)*(-3y^{2}x+8y^{3} )-(-xy^{2} -2y^{4}+4x)*(4x^{3} +2)}{(y^{4}+2y) ^{2} }

= \frac{-3xy^{6}-8y^{7}+6xy^{3}-16y^{4}-4xy^{6}  +8xy^{3} +8y^{7} +4y^{4}  -16xy^{3} +8 }{y^{8}+4y^{5} + 4y^{2} }

= \frac{-7x^{6}-8y^{3} x- 12y^{4}+8  }{y^{8}+4y^{5}+4y^{2}   }

=\frac{-(7x^{6} + 8xy^{2}+12y^{4}-8)  }{(y^{4}+2y)^{2}  }

#SPJ3

Similar questions