y= 7 + 4 √(3) x= 7 - 4 √(3)
find x cube + y cube
Answers
Answered by
2
__________________________________
Given,
y = 7 + 4√3
x = 7 - 4√3.
Now,
= x³ + y³
= ( x + y ) ( x² + y² - xy ).
We have the values of x and y but not the values of x² , y² and xy.So, first we need to find them.
⇒ x² = ( 7 + 4√3 )²
⇒ x² = ( 7 )² + ( 4√3 )² + 2 × 7 × 4√3
⇒ x² = 49 + 48 + 56√3
∴ x² = 97 + 56√3
Now,
⇒ y² = ( 7 - 4√3 )²
⇒ y² = ( 7 )² + ( 4√3 )² - 2 × 7 × 4√3
⇒ y² = 49 + 48 - 56√3
∴ y² = 97 - 56√3
Now,
⇒ xy = ( 7 + 4√3 ) ( 7 - 4√3 )
⇒ xy = ( 7 )² - ( 4√3 )²
⇒ xy = 49 - 48
∴ xy = 1.
Now,
= ( x + y ) ( x² + y² - xy )
= ( 7 + 4√3 + 7 - 4√3 ) ( 97 + 56√3 + 97 - 56√3 - 1 )
= ( 14 ) ( 194 - 1 )
= 14 × 193
= 2,702.
Hope it helps !
Given,
y = 7 + 4√3
x = 7 - 4√3.
Now,
= x³ + y³
= ( x + y ) ( x² + y² - xy ).
We have the values of x and y but not the values of x² , y² and xy.So, first we need to find them.
⇒ x² = ( 7 + 4√3 )²
⇒ x² = ( 7 )² + ( 4√3 )² + 2 × 7 × 4√3
⇒ x² = 49 + 48 + 56√3
∴ x² = 97 + 56√3
Now,
⇒ y² = ( 7 - 4√3 )²
⇒ y² = ( 7 )² + ( 4√3 )² - 2 × 7 × 4√3
⇒ y² = 49 + 48 - 56√3
∴ y² = 97 - 56√3
Now,
⇒ xy = ( 7 + 4√3 ) ( 7 - 4√3 )
⇒ xy = ( 7 )² - ( 4√3 )²
⇒ xy = 49 - 48
∴ xy = 1.
Now,
= ( x + y ) ( x² + y² - xy )
= ( 7 + 4√3 + 7 - 4√3 ) ( 97 + 56√3 + 97 - 56√3 - 1 )
= ( 14 ) ( 194 - 1 )
= 14 × 193
= 2,702.
Hope it helps !
Anonymous:
Thanks Alia
Answered by
5
heya friend here's ur answer :-)

now,

hope it helps
now,
hope it helps
Similar questions
Math,
9 months ago
Social Sciences,
9 months ago
English,
9 months ago
Physics,
1 year ago
Math,
1 year ago