Math, asked by Alia15, 1 year ago

y= 7 + 4 √(3) x= 7 - 4 √(3)
find x cube + y cube

Answers

Answered by Anonymous
2
                __________________________________

Given,


y = 7 + 4√3

x = 7 - 4√3.

Now,

= x³ + y³

= ( x + y ) ( x² + y² - xy ).

We have the values of x and y but not the values of x² , y² and xy.So, first we need to find them.

⇒ x² = ( 7 + 4√3 )²

⇒ x² = ( 7 )² + ( 4√3 )² + 2 × 7 × 4√3

⇒ x² = 49 + 48 + 56√3

∴ x² = 97 + 56√3

Now,

⇒ y² = ( 7 - 4√3 )²

⇒ y² = ( 7 )² + ( 4√3 )² - 2 × 7 × 4√3

⇒ y² = 49 + 48 - 56√3

∴  y² = 97 - 56√3

Now,

⇒ xy = ( 7 + 4√3 ) ( 7 - 4√3 )

⇒ xy = ( 7 )² - ( 4√3 )²

⇒ xy = 49 - 48

∴  xy = 1.

Now,

= ( x + y ) ( x² + y² - xy )

= ( 7 + 4√3 + 7 - 4√3 ) ( 97 + 56√3 + 97 - 56√3 - 1 )

= ( 14 ) ( 194 - 1 )

= 14 × 193

= 2,702.



Hope it helps !



Anonymous: Thanks Alia
Answered by BrainlyQueen01
5
heya friend here's ur answer :-)

y = 7 + 4 \sqrt{3}  \\  \\  \frac{1}{y}  =  \frac{1}{7  +  4 \sqrt{3} }  \times  \frac{7  -  4 \sqrt{3} }{7  -  4 \sqrt{3} }  =   \frac{ 7  -  4\sqrt{3} }{(7) {}^{2}  - (4 \sqrt{3}) {}^{2}  }  =  \frac{7  - 4 \sqrt{3} }{49 - 48}  = 7  -  4 \sqrt{3}  \\  \\ x = 7 - 4 \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{7 - 4 \sqrt{3} }  \times  \frac{7 + 4 \sqrt{3} }{7 + 4 \sqrt{3} }  =  \frac{7 + 4 \sqrt{3} }{(7) {}^{2}  - (4 \sqrt{3}) {}^{2}  }  = 7 + 4 \sqrt{3}


now,

x  + y = (7 - 4 \sqrt{3} ) + (7 + 4 \sqrt{3} ) \\ x + y = 14 \\  \\ (x + y) {}^{3}  = x {}^{3}  + y {}^{3}  + 3xy(x + y) \\ (14) {}^{3}  = x {}^{3}  + y {}^{3}  + 3 \times x \times y(14) \\ x {}^{3}  + y {}^{3}  = 51xy - 2744 \\ x {}^{3}  + y {}^{3}  = 51{(7 - 4 \sqrt{3} ) (7 + 4 \sqrt{3} )}   - 2744\\ x {}^{3} + y {}^{3}   = 357 - 204 \sqrt{3 }  + 357 + 204 \sqrt{3 }  - 2744 \\ x {}^{3}  + y {}^{3}  = 714 - 2744 \\ x {}^{3}  + y {}^{3}   =  - 2030

hope it helps

BrainlyQueen01: it's ok
Similar questions