Math, asked by Ayatkhan1, 1 year ago

y=A cos nx + B sin nx prove that d^2y/dx^2 + n^2y=0

Answers

Answered by MarkAsBrainliest
30
\textbf{Answer :}

Given,

$ y = A cos nx + B sin nx $

Differentiating both sides with respect to x, we get

dy/dx = - nA sin nx + nB cos nx

Again, Differentiating with respect to x, we get

 \frac{ {d}^{2}y }{d {x}^{2} } = - {n}^{2} A \: cos \: nx - {n}^{2} B \: sin \: nx \\ \\ Or, \: \: \frac{ {d}^{2} y}{d {x}^{2} } + {n}^{2} (A \: cos \: nx \: + B \: cos \: nx) = 0 \\ \\ Or, \: \: \frac{ {d}^{2}y }{d {x}^{2} } + {n}^{2} y = 0 \\ \\ Hence, \: \: proved.

#\textbf{MarkAsBrainliest}
Similar questions