Math, asked by rishiyad2013, 1 month ago

y=e^asin-1x show that (1-x^2)y2-xy1-a^2y=0​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y  = {e}^{a \:  {sin}^{ - 1} x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y  =\dfrac{d}{dx} {e}^{a \:  {sin}^{ - 1} x}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {e}^{x} =  {e}^{x} \: }}

So, using this

\rm :\longmapsto\:y_1  = {e}^{a \:  {sin}^{ - 1} x} \dfrac{d}{dx} {a \: sin}^{ - 1}x

\rm :\longmapsto\:y_1  =a \:  y \dfrac{d}{dx} { \: sin}^{ - 1}x

\rm :\longmapsto\:y_1  =a \:  y \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

\rm :\longmapsto\: \sqrt{1 -  {x}^{2}} \: y_1 \:  =  \: ay

On squaring both sides, we get

\rm :\longmapsto\: {(1 - x}^{2}) {y_1}^{2}  =  {a}^{2} {y}^{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}{(1 - x}^{2}) {y_1}^{2}  =  \dfrac{d}{dx}{a}^{2} {y}^{2}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}uv \:  =  \: u\dfrac{d}{dx}v \: +  \:  v\dfrac{d}{dx}u \: }}

So, using this, we get

\rm :\longmapsto\:(1 -  {x}^{2})\dfrac{d}{dx} {y_1}^{2} +  {y_1}^{2}\dfrac{d}{dx}(1 -  {x}^{2}) =  {a}^{2}\dfrac{d}{dx} {y}^{2}

\rm :\longmapsto\:(1 -  {x}^{2})2y_1y_2 +  {y_1}^{2}(0 - 2x) =  {a}^{2}2yy_1

\rm :\longmapsto\:(1 -  {x}^{2})2y_1y_2  - 2x {y_1}^{2}=  {a}^{2}2yy_1

\rm :\longmapsto\:2y_1 \: [(1 -  {x}^{2})y_2  - x y_1]=  2{a}^{2}yy_1

\rm :\longmapsto\:(1 -  {x}^{2})y_2  - x y_1=  {a}^{2}y

\rm :\longmapsto\:(1 -  {x}^{2})y_2  - x y_1 - {a}^{2}y = 0

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions