Math, asked by ssathyaprasanna17, 5 months ago

y = e^x(sin x + cos x), prove that d^2y/dx^2 -2 dy/dx + 2y = 0

Answers

Answered by yokeshps2005
2

Step-by-step explanation:

2xe - xy ety – e - ty ety + e - ry 2x € 2xy +1 - exy + e - xy у dy dx fx ( x , y ) fy ( x , y ) х dạy X dy dx y 2y Also , dx2 X x2 § 11.14 . IMPLICIT FUNCTION BY A SINGLE FUNCT

Answered by BrainlyIAS
16

Given :

\bullet\ \; \sf y=e^x(sin\ x+cos\ x)

To Prove :

\bullet\ \; \sf \dfrac{d^2y}{dx^2}-2 \dfrac{dy}{dx}+2y=0

Proof :

\sf y=e^x(sin\ x+cos\ x)

On differentiating wrt 'x' on b.s , we get ,

\\ \to \sf \dfrac{dy}{dx}=e^x(cos\ x-sin\ x)+(sin\ x+cos\ x) e^x\\

\\ \to \sf \dfrac{dy}{dx}=e^x.cos\ x-e^x.sin\ x+e^x .sin\ x+e^x . cos\ x\\

\to \sf \dfrac{dy}{dx}=2 e^x.cos\ x

Again differentiating b.s wrt 'x' , we get ,

\to \sf \dfrac{d^2y}{dx^2}=-2e^x.sin\ x+2e^x.cos\ x...(1)

Now \sf 2\ \dfrac{dy}{dx} ,

\to \sf 2( 2e^x.cos\ x )

So ,

\sf \to 2\ \dfrac{dy}{dx}=4e^x.cos\ x...(2)

Now 2y ,

\to \sf 2(e^x(sin\ x+cos\ x))

\to \sf 2(e^x.sin\ x+e^x.cos\ x)

So ,

\to \sf 2y=2e^x.sin\ x+2e^x .cos\ x ...(3)

Now our required ,

LHS

:\implies \sf \dfrac{d^2y}{dx^2}-2\ \dfrac{dy}{dx}+2y

\\ :\implies \sf -2e^x.sin\ x+2e^x.cos\ x-(4e^x.cos\ x)+2e^x.sin\ x+2e^x.cos\ x\\

:\implies \sf 4e^x.cos\ x-4e^x.cos\ x

:\implies \sf 0\ \; \purple{\bigstar}

RHS

\orange{\bigstar} ... Hence proved  ... \green{\bigstar}

Similar questions