Math, asked by dharmvirjoshi, 9 months ago

Y is equal to 10 inverse under root 1 - 2 Sin 2x upon 1 + sin 2x find dy/dx​

Answers

Answered by Anonymous
2

Correct question:

y =  { \tan }^{ - 1}  \sqrt{ \dfrac{1 -  \sin2x }{1 +  \sin2x } }

Find \dfrac{dy}{dx}

Answer:

\large\boxed{\sf{-1}}

Step-by-step explanation:

Given that,

y =  { \tan }^{ - 1}  \sqrt{ \dfrac{1 -  \sin2x }{1 +  \sin2x } }

But, we know that,

 \sin(2x)  =  \dfrac{2 \tan(x) }{1 +  { \tan }^{2} x}

Substituting this value and simplifying, we get,

 =  > y =  { \tan }^{ - 1}  \sqrt{ \dfrac{1 -  \frac{2 \tan(x) }{1 +  { \tan }^{2}x } }{1 +  \frac{2 \tan(x) }{1 +  { \tan }^{2} x} } }  \\  \\  =  > y =  { \tan }^{ - 1}  \sqrt{ \dfrac{1 +  { \tan }^{2} x - 2 \tan(x) }{1 +  { \tan }^{2} x + 2 \tan(x) } }  \\  \\  =  > y =  { \tan}^{ - 1}  \sqrt{ \dfrac{ {(1 -  \tan x) }^{2} }{ {(1 +  \tan x) }^{2} } }  \\  \\  =  > y =  { \tan}^{ - 1}  \sqrt{ {( \frac{1 -  \tan x}{1 +  \tan x } )}^{2} }  \\  \\  =  > y =  { \tan}^{ - 1} ( \frac{1 -  \tan x }{1 +  \tan x} ) \\  \\  =  > y =  { \tan }^{ - 1} ( \frac{ \tan \frac{\pi}{4}  -  \tan x }{1 +  \tan \frac{\pi}{4} \tan x   } ) \\ \\   =  > y =  { \tan }^{  - 1}( {\tan( \frac{\pi}{4} - x ) } ) \\  \\  =  > y =  \frac{\pi}{4}  - x

Now, differentiating both sides wrt x, we get,

 =  >  \dfrac{dy}{dx}  =  \dfrac{d}{dx} ( \frac{\pi}{4}  - x) \\  \\  =  >  \frac{dy}{dx}  =  - 1

Hence, the required value is -1.

Similar questions