Y is equal to 2 upon sin theta + root 3 cos theta then the minimum value of y is
Answers
Answer:
here is ur answere
Step-by-step explanation:
y =2/(sinθ + √3cosθ)
for solving this question, you should understand one thing
-\bf{\sqrt{a^2+b^2}}
a
2
+b
2
≤ asinx + bcosx ≤\bf{\sqrt{a^2+b^2}}
a
2
+b
2
So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)
-2 ≤ (sinθ + √3cosθ) ≤ 2
So, minimum value of (sinθ + √3cosθ) = -2
Maximum value of (sinθ + √3cosθ) = 2
For getting minimum value of y , we have to use maximum value of (sinθ + √3cosθ) .
So, minimum value of y = 2/-2 = 1
Hence, \bf{y_{min}}y
min
=1
follow me
mark me as brainliest
Answer:
√3 - 1
Step-by-step explanation:
y = 2 / sinx + √3 cos x
sinx + √3 cos x ≠ 0
if y should be min
sinx + √3 cos x should be max
so max value of sinx is 1 and cosx is also 1
so 1 + √3
so min value is y is 2 / 1 + √3
= √3 - 1 ( rationalize )