Math, asked by shreyasvasista75, 11 months ago

Y=log (logx) differentiate

Answers

Answered by Sharad001
22

Question :-

y = log ( log x) differentiate it .

Answer :-

\:  \:  \:  \:   \:  \:  \:  \:  \: \: \:  \to  \boxed{\sf \: \frac{dy}{dx}  =  \frac{1}{x \:  \log(x)} } \:

Solution :-

→ we have ,

 \to \sf \:  y =   log \{log(x)  \} \\  \\ \bf differentiate \: with \: respect \: to \: x \\  \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \to \:  \frac{dy}{dx}  = log \{log(x) \\  \\   \boxed{ \sf\because \:  \frac{d}{dx} \log x =  \frac{1}{x}  } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \to \sf \:  \frac{dy}{dx}  =  \frac{1}{ \log(x)}  \frac{d}{dx}  \{log(x) \} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\to \sf  \frac{dy}{dx} =  \frac{1}{ \log(x)}    \times  \frac{1}{x} \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \to  \boxed{\sf \: \frac{dy}{dx}  =  \frac{1}{x \:  \log(x)} }

Some Differential formula :-

 \star \sf \:   \frac{d}{dx} {e}^{x}   =  {e}^{x}  \\  \\  \star \sf \:   \frac{d}{dx}  {a}^{x}  =  {a}^{x}   log_{e}(a)  \\  \\  \star \sf \:   \frac{d}{dx}  \tan x =  { \sec}^{2} x \\  \\  \star \sf \:  \frac{dy}{dx} \:  \sec x =  \sec x \: . \tan x \\  \\  \star \sf \: \frac{d}{dx}   { \tan}^{ - 1} x =  \frac{1}{1 +  {x}^{2} }  \\  \\  \star \sf \:  \frac{d}{dx}  { \sin}^{ - 1} x =  \frac{1}{ \sqrt{1 -  {x}^{2} } }  \\  \\  \star \sf \:  \frac{d}{dx}  \:  { \sec}^{ - 1} x =  \frac{1}{x \sqrt{ {x}^{2}  - 1} }

Similar questions