Math, asked by VedantBhagat, 9 months ago

y = (logx)^logx differentiate​

Answers

Answered by ITzBrainlyGuy
17

  { \rm{ \green \rightarrow { \underline{ \underline \orange{Answer}}}  \green{ \leftarrow}}}

 \small{ \bf{y =  { log(x) }^{  log(x) } }} \\  \small{ \sf{Find \: the \: derivative \: of \: the \: function}} \\  \small{ \bf{ \to y' = \frac{d}{dx}  ( { log(x) }^{ log(x) } ) }} \\  \small{ \sf{expand \: the \: expression}} \\ { \bf{ \to y' =  \frac{d}{dx} ( {e}^{ ln( log(x))  log(x)  } )}} \\ { \sf{Use \: differentiation \: rules}} \\  \small{ \bf{ \to y' =  \frac{d}{dg}( {e}^{g}) \frac{d}{dx} ( ln( log(x) )   log(x) )}} \\ { \sf{Calculate \: the \: derivatives}} \\\small{\bf{ \to y' =  {e}^{g} ( \frac{1}{ log(x)} \frac{1}{ ln( 10(x) )  }  \times log(x)  }} \\ \:  \:  \:  \:  \:  \:   \small{ \bf{ +  ln( log(x) )  \times  \frac{1}{ ln(10)x } )}} \\ { \sf{substitute \: back }} \\  \small{ \bf{ \to  y'= ({e}^{ ln( log(x))  log(x)})( \frac{1}{ log(x) }  \times  \frac{1}{ ln(10)x } \times  log(x)   }} \\ \small{ \bf{ \:  \:  \:  \:  \:   +  ln( log(x \times  \frac{1}{ ln(10)x } ) ) }}  \\ \\ {\sf{Simplify\: the\: expression}}   \\ \small{ \bf{ \to y' =  \frac{  { log(x) }^{ log(x)  }  +  { log(x) }^{ log(x)  }  +  ln( log(x) )  }{ ln(10)x } }}

Hence differentiated

Similar questions