Math, asked by Sciences8077, 1 year ago

y=sec( tan -1 x).find dy\dx

Answers

Answered by sinu30
17
y= (tan-1x) = dy/dx
tan=1x-y=dy/dx
tan=x-y=dy/dx
dy/dx=x-y+tan
dy/dx=tanx-y
Answered by DelcieRiveria
44

Answer:

The required solution is \frac{dy}{dx}=\frac{xy}{1+x^2}.

Step-by-step explanation:

The given equation is

y=sec(tan^{-1}x)

According to the Chain rule, the derivative of f(g(x)) is

\frac{d}{dx}f(g(x))=f'(g(x))g'(x)

Differentiate with respect to x.

\frac{dy}{dx}=sec(tan^{-1}x)tan(tan^{-1}x)\times \frac{d}{dx}(tan^{-1})                [\frac{d}{dx}secx=secx\cdot tanx]

\frac{dy}{dx}=sec(tan^{-1}x)tan(tan^{-1}x)\times (\frac{1}{1+x^2})                    [\frac{d}{dx}tan^{-1}x=\frac{1}{1+x^2}]

\frac{dy}{dx}=\frac{xy}{1+x^2}              [y=sec(tan^{-1}x)]

Therefore the required solution is \frac{dy}{dx}=\frac{xy}{1+x^2}.

Similar questions