Math, asked by kumarigeeta0812, 1 month ago

y=sec(tan^-1x) then dy/dx at x=2​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

y =  \sec( \tan^{ - 1} (x) )

 \implies \:  \rm \: y =  \sec( \sec^{ - 1} ( \sqrt{1 +  {x}^{2} } ) )

 \implies \:  \rm \: y =  \sqrt{1 +  {x}^{2} }

 \implies \:  \rm \:  \frac{dy}{dx}  =  \frac{2x}{2\sqrt{1 +  {x}^{2} } } \\

 \implies \:  \rm \:  \frac{dy}{dx}  =  \frac{x}{\sqrt{1 +  {x}^{2} } } \\

\implies \:  \rm \:  \frac{dy}{dx}\bigg|_{x=2}  =  \frac{2}{\sqrt{1 +  {2}^{2} } }=\frac{2}{5}\\

Similar questions
Math, 9 months ago