Math, asked by mritunjoy820, 1 year ago

y = sin^{-1} (1-x^{2} / 1+x^{2}), 0 < x < 1 dy/dx ज्ञात कीजिए

Answers

Answered by Sharad001
66

★彡 Question ★彡

 \rm if \: y =  { \sin}^{ - 1}  \big( \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \big) \: , \: 0 &lt; x &lt; 1 \: find \:  \frac{dy}{dx}  \\

★彡 Answer 彡★

\to \boxed{ \rm\frac{dy}{dx} =  \frac{ - 2}{1 +  {x}^{2} }  } \:

★彡 Solution 彡★

We have ,

 \rm \: y =  { \sin}^{ - 1}  \big( \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \big) \: \:  \\  \\ \sf \red{ differentiate \: with \: respect \: to \: x} \\  \\  \to \rm \frac{dy}{dx}  =  \frac{d}{dx}  { \sin}^{ - 1}  \big( \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \big) \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \rm  \frac{d}{dx}  { \sin}^{ - 1} x =  \frac{1}{ \sqrt{1 -  {x}^{2} } } } \\  \\  \to \rm  \frac{dy}{dx}  =  \frac{1}{ \sqrt{1 -  {  \big(\frac{1 -  {x}^{2} }{1 +  {x}^{2} } \big) }^{2} } }  \frac{d}{dx}  \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \\  \\  \to \rm \frac{dy}{dx}  =  \frac{1 +  {x}^{2} }{ \sqrt{ {(1 +  {x}^{2}) }^{2} -  { {(1 -  {x}^{2} )}}^{2}  } }  \frac{d}{dx}  \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \\  \\  \to \rm  \frac{dy}{dx}  =  \frac{1 +  {x}^{2} }{ \sqrt{2 {x}^{2} + 2 {x}^{2}  } }  \frac{d}{dx}  \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \:....eq.(1) \\  \\  \sf \: for \: find \\  \\  \to \rm \frac{d}{dx}  \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \\  \\ \sf we \: use \: quotient \: rule \\  \\  \to \rm\frac{(1 +  {x}^{2}) \frac{d}{dx} (1 -  {x}^{2} ) - (1 -  {x}^{2}) \frac{d}{dx} (1 +  {x}^{2}  ) }{ {(1 +  {x}^{2}) }^{2} }  \\  \\  \to \rm \frac{(1 +  {x}^{2}) ( - 2x) - (1 -  {x}^{2})(  2x)}{ {(1 +  {x}^{2}) }^{2} }  \\  \\  \to \rm  \frac{ - 2 {x} - 2 {x}^{3}  - 2x + 2 {x}^{3} }{ {(1 +  {x}^{2} )}^{2} }  \\  \\  \to \rm \: \frac{ - 4x}{ {(1 +  {x}^{2} )}^{2} }  \\  \\ \sf so \: eq.(1) \: wil \: be \:

\rm  \frac{dy}{dx}  =  \frac{1 +  {x}^{2} }{ \sqrt{2 {x}^{2} + 2 {x}^{2}  } }  \bigg(\: \frac{ - 4x}{ {(1 +  {x}^{2} )}^{2} }  \bigg) \\  \\  \to \rm \frac{dy}{dx}  =  \frac{ - 4x}{ \sqrt{4 {x}^{2}} (1 +  {x}^{2} )}  \\  \\  \to \rm \:  \frac{dy}{dx}  =  \frac{ - 4x}{2x(1 +  {x}^{2}) }  \\  \\  \to \boxed{ \rm\frac{dy}{dx} =  \frac{ - 2}{1 +  {x}^{2} }  }

Answered by amitnrw
3

dy/dx  = - 2/(1 + x²) यदि y   = Sin⁻¹ ( 1 - x²)/(1 + x²)

Step-by-step explanation:

y   = Sin⁻¹ ( 1 - x²)/(1 + x²)

=> Siny =  ( 1 - x²)/(1 + x²)

Cosy dy/dx  =  ((1 - x²) (-1)/(1 + x²)² )2x    + (-2x)/(1 + x²)

=> Cosy dy/dx  =  (2x³ - 2x)/(1 + x²)²     - 2x /(1 + x²)

=> Cosy dy/dx  =  (2x³ - 2x  - 2x³ - 2x)/(1 + x²)²

=> Cosy dy/dx  = -4x/(1 + x²)²

Cosy = √(1 - Sin²y)   =  √(1 -  (( 1 - x²)/(1 + x²))²

=> Cosy = 2x/(1 + x²)

=>(2x/ (1 + x²) )dy/dx  = -4x/(1 + x²)²  

=> dy/dx  = - 2/(1 + x²)

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Similar questions