Math, asked by sandhyasharma5181, 11 months ago

Y=sin(2sin^-1x) show that dy/dx=2root of 1 -y^2/root of 1 -x^2

Answers

Answered by ihrishi
0

Step-by-step explanation:

y = sin(2 {sin}^{ - 1} x) \\  \frac{dy}{dx}  =  \frac{d}{dx} sin(2 {sin}^{ - 1} x )\\  = cos \: (2 {sin}^{ - 1} x) \times  \frac{d}{dx} (2 {sin}^{ - 1} x) \\  =  cos \: (2 {sin}^{ - 1} x) \times  \frac{2}{ \sqrt{1 -  {x}^{2} } }   \\ = \frac{2  cos \: (2 {sin }^{ - 1} x)}{ \sqrt{1 -  {x}^{2} } }  \:  \\   = \frac{2 \sqrt{1 -  {sin}^{2}(2 {sin}^{ - 1}  x} )}{ \sqrt{1 - {x}^{2}  } }  \\  =  \frac{2 \sqrt{1 -  {y}^{2}}}{ \sqrt{1 - {x}^{2}  } }

Similar questions