Y = sin x / x + cos ( ln x), then find dy/dx
Answers
Answered by
1
given,
y=(sinx)/x+cos(logx)
here lnx means log x to the base e
let a=(sinx)/x and b=cos(log x)
then y=a+b
differentiate the a with respect to x
(da/dx)= d(sinx/x)/dx
[here we have to use u/v rule]
(da/dx)= [ x(d(sinx)/dx)-(sinx)(d(x)/dx) ] / (x)^2
(da/dx)=[ x(cosx)-(sinx)(1) ] / (x)^2
(da/dx)=(xcos(x)-sin(x)] / x^2
differentiate the b with respect to x
(db/dx)=d(cos(logx))/dx
[here we have to use chain rule]
(db/dx)=[ d(cos(logx))/dx ] [ d(logx)/dx ] [d(x)/dx ]
(db/dx)=[ sin(logx) ] [1/x][1]
(db/dx)=[sin(logx)]/x
differentiate the y with respect to x
(dy/dx)= (da/dx)+(db/dx)
(dy/dx)={ [xcos(x)-sin(x)]/x^2 } + { [sin(logx)]/x }
(dy/dx)= { [xcos(x) -sin(x)]/x^2 }+{ [xsin(logx)]/x^2 }
(dy/dx)= [ xcos(x)-sin(x)+xsin(logx) ] / (x^2)
Similar questions