Physics, asked by mishrashruti1788, 8 months ago

y=sinx/cosx find dy /dx​

Answers

Answered by Anonymous
1

Given ,

The function is y = sin(x)/cos(x)

Differentiating y wrt x , we get

 : \mapsto \tt \frac{dy}{dx}  =  \frac{ \cos(x) \frac{d \sin(x) }{dx}  -  \sin(x)  \frac{d \cos(x) }{dx}  }{ {  \cos}^{2}(x) }

 : \mapsto \tt \frac{dy}{dx}  =  \frac{ \cos(x) \cos(x)  +  \sin(x) \sin(x)   }{ { \cos}^{2}(x) }

 : \mapsto \tt \frac{dy}{dx}  =  \frac{ { \cos}^{2}(x) +  { \sin}^{2}(x)  }{ { \cos}^{2}(x) }

 : \mapsto \tt \frac{dy}{dx}  =  \frac{1}{ { \cos}^{2}(x) }

 : \mapsto \tt \frac{dy}{dx}  =  {sec}^{2} (x)

The derivative of given function is sec²(x)

Remmember :

 : \mapsto \tt \frac{d(u.v)}{dx}  =  \frac{v \frac{du}{dx}  - u \frac{dv}{dx} }{ {(v)}^{2} }

 : \mapsto \tt \frac{d \sin(x) }{dx}  =  \cos(x)

 : \mapsto \tt \frac{d \cos(x) }{dx}  =  -  \sin(x)

 : \mapsto \tt  { \cos}^{2}(x) +  { \sin}^{2} (x)   = 1

Similar questions