Y=sinx cosx
Answers
Step-by-step explanation:
Brainly.in
What is your question?
1
Secondary School Math 5 points
Y= cosx+sinx/cosx - sinx , show that dy/dx= sec square (pi/4 +x) . explain
Ask for details Follow Report by Hshahahvau2ygvwy 21.03.2018
Answers
kumarsriram19p62r7g
kumarsriram19p62r7g Ambitious
Its simple and hence proved
4.8
9 votes
THANKS
15
Comments Report
harendrachoubay Expert
\dfrac{dy}{dx} =\sec^2 (\dfrac{\pi}{4}+x), proved.
Step-by-step explanation:
y=\dfrac{\cos x+\sin x}{\cos x-\sin x}
To prove that, \dfrac{dy}{dx} =\sec^2 (\dfrac{\pi}{4}+x)
∴ y=\dfrac{\cos x+\sin x}{\cos x-\sin x}
⇒y=\dfrac{\dfrac{\cos x+\sin x}{\cos x}}{\dfrac{\cos x-\sin x}{\cos x}}
Dividing nemerator and denominator by \cos x, we get
⇒ y=\dfrac{1+\tan x}{1-\tan x}
⇒y=\dfrac{\tan \dfrac{\pi}{4} +\tan x}{1-\tan \dfrac{\pi}{4}\tan x}
[ ∵ \tan (A +B})=\dfrac{\tan A +\tan B}{1-\tan A\tan B}]
⇒ y=\tan (\dfrac{\pi}{4} +x})
Differentiating both sides w.r.t. x, we get
\dfrac{dy}{dx} =\sec^2 (\dfrac{\pi}{4}+x), proved.
Answer:
cosx..sinx...2378916..