Math, asked by geethacharan57, 2 months ago

y = (sinx)^tanx + (cosx)^secx​

Answers

Answered by amansharma264
3

EXPLANATION.

\sf \implies y = (sin x)^{tan x}  + (cos x)^{sec x}

As we know that,

Let we assume that,

\sf \implies u = (sin x)^{tan x}

\sf \implies v = (cos x)^{sec x}

\sf \implies y = u + v

\sf \implies \dfrac{dy}{dx} = \dfrac{du}{dx} + \dfrac{dv}{dx}

\sf \implies  u = (sin x)^{tan x}

Taking log on both sides, we get.

\sf \implies  log (u) = log (sin x)^{tan x}

\sf \implies  log(u) = (tan x) log (sin x)

Differentiate both sides w.r.t x, we get.

\sf \implies  \dfrac{1}{u} . \dfrac{du}{dx}  = \dfrac{d[ (tan x) log (sin x)]}{dx}

\sf \implies  \dfrac{1}{u} . \dfrac{du}{dx}  = (tan x) . \dfrac{d[log (sin x)]}{dx} \ + log (sin x) .\dfrac{d(tan x)}{dx}

\sf \implies  \dfrac{1}{u} . \dfrac{du}{dx}  =  \dfrac{(tan x)}{(sin x)} . \dfrac{d(sin x)}{dx} \ + log(sin x) .(sec^{2} x)

\sf \implies  \dfrac{1}{u} . \dfrac{du}{dx}  = \bigg[ 1 + log(sin x).(sec^{2}x) \bigg]

\sf \implies    \dfrac{du}{dx} = u \bigg[ 1 + log(sinx).(sec^{2} x) \bigg]

\sf \implies   \dfrac{du}{dx} = (sin x)^{tan x} \bigg[  1 + log(sin x).(sec^{2} x) \bigg].

\sf \implies v = (cos x)^{sec x}

Taking log on both sides, we get.

\sf \implies log(v) = log(cosx)^{secx}

\sf \implies log(v) = (sec x) log(cosx)

Differentiate both sides w.r.t x, we get.

\sf \implies  \dfrac{1}{v} . \dfrac{dv}{dx}  = \dfrac{d[(sec x) log(cos x)]}{dx}

\sf \implies  \dfrac{1}{v} . \dfrac{dv}{dx}  = (sec x). \dfrac{d[log (cosx)]}{dx} \ + log(cosx) .\dfrac{d[secx]}{dx}

\sf \implies  \dfrac{1}{v} . \dfrac{dv}{dx}  = (sec x) \times \dfrac{1}{(cos x)} . \dfrac{d[cos x]}{dx} \ + log(cos x) . (sec x. tan x)

\sf \implies  \dfrac{1}{v} . \dfrac{dv}{dx}  = (sec x) \times \dfrac{(-sin x)}{(cos x)} \ + log(cos x).(sec x . tan x)

\sf \implies  \dfrac{1}{v} . \dfrac{dv}{dx}  = \bigg[ (sec x).(-tan x) \ + log(cos x).(sec x. tan x) \bigg]

\sf \implies  \dfrac{1}{v} . \dfrac{dv}{dx}  = \bigg[ log(cos x)(sec x .tan x) - (sec x)(tan x) \bigg]

\sf \implies  \dfrac{1}{v} . \dfrac{dv}{dx}  = \bigg[ (sec x . tan x) \bigg( log(cos x) - 1 \bigg) \bigg]

\sf \implies    \dfrac{dv}{dx}  = v \bigg[ (sec x . tan x ) \bigg( log(cos x) - 1 \bigg) \bigg]

\sf \implies  \dfrac{dv}{dx}  = (cos x)^{sec x} \bigg[ (sec x . tan x) \bigg( log(cos x) - 1 \bigg) \bigg]

\sf \implies y = u + v.

\sf \implies \dfrac{dy}{dx} = (sin x)^{tan x} \bigg[ 1 + log(sin x).(sec^{2} x) \bigg] \ + (cos x)^{sec x} \bigg[ (sec x . tan x ) \bigg( log(cos x) - 1 \bigg) \bigg]

Similar questions