Math, asked by Rahu88, 11 months ago

y
 {y}^{2}  + 6y + 63 = 0

Answers

Answered by Sharad001
19

Question :-

Find for y ,

 \mapsto \sf  {y}^{2}  + 6y + 63 = 0 \\

Answer :-

\to  \boxed{\sf \: y =  - 3 \pm \iota \:  \sqrt{54} } \sf \:  imaginary \: value \\   \sf  \: or \:  \\   \to  \boxed{\sf \:  y =  - 3 \pm \sqrt{ - 54} } \:

Used formula :-

Here we will use shri dharacharya principle .

If we have a Quadratic f(y) = ay² + by + c = 0

i,e.

 \to \sf \:  y \:  =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \\

Solution :-

We have ,

 \to \sf \:  {y}^{2}  + 6y + 63 = 0 \\  \\  \sf \: here \:  \\  \to \sf \: a = 1 , b = 6  \:  \: and  \: c = 63 </p><p> \:  \\  \therefore \:  \\  \\  \to \sf y =  \frac{ - 6 \pm \sqrt{ {(6)}^{2}  - 4 \times 1 \times 63} }{2 \times 1}  \\  \\  \to \sf \:  y =  \frac{ - 6 \pm \sqrt{36 - 252} }{2}  \\  \\  \sf \to \: y =  \frac{ - 6 \pm \sqrt{ (- 216}) }{2}  \\  \\  \to \sf  y =  \frac{ - 6 \pm \:  \sqrt{ - 1} \sqrt{216}  }{2}  \\  \\  \:  \:  \:  \:  \:  \: \boxed{ \sf  \because \iota(iota) =  \sqrt{ - 1} } \\  \\  \to \sf \: y =  \frac{ - 6  \pm \iota \sqrt{216} }{2}  \\  \\  \to \sf y =  \frac{ - 6 \pm \: 2 \iota \sqrt{54} }{2}  \\  \\  \to  \boxed{\sf \: y =  - 3 \pm \iota \:  \sqrt{54} } \sf \:  imaginary \: value \\   \sf  \: or \:  \\  \\  \to  \boxed{\sf \:  y =  - 3 \pm \sqrt{ - 54} }

Similar questions