Math, asked by jassi4051, 1 year ago

y=x/√1-x2 find d3y/dy3

Attachments:

Answers

Answered by shashankavsthi
3

y =  \frac{x}{ \sqrt{1 -  {x}^{2} } }  \\  \frac{dy}{dx}  =  \frac{ \sqrt{1 -  {x}^{2}  }  -  \frac{1}{2 \sqrt{1 -  {x}^{2} }  }  \times 2x}{1 -  {x}^{2} }  \\  \frac{dy}{dx }  =  \frac{1 - 2 {x}^{2} }{ {(1 -  {x}^{2}) }^{ \frac{3}{2} } }  \\  \frac{ {d}^{2}y }{d {x}^{2} }  =   \frac{ - 4x {(1 -  {x}^{2}) }^{ \frac{3}{2}  } -  \frac{3}{2}  {(1 -  {x}^{2}) }^{2} \times 2x  }{(  {1 -  ({x)}^{2} )}^{3} }  \\  \frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{ - 4x {(1 -  {x}^{2}) }^{ \frac{3}{2} } - 3 {(1 -  {x}^{2} )}^{ \frac{1}{2} }  }{ {(1 -  {x}^{2} )}^{3} }  \\  \frac{ {d}^{3} y}{d {x}^{3} }  =  \frac{( ( - 4 {(1 -  {x}^{2} )}^{ \frac{3}{2} } - 4 {x}^{2}  \sqrt{1 -  {x}^{2} }   -  \frac{3x}{2}  {(1 -  {x)}^{ \frac{ - 1}{2} } }^{2} ))( {1 -  {x}^{2}) }^{3} - ( - 4 ({1 -  {x}^{2}) }^{ \frac{3}{2} }   - 3 {(1 -  {x}^{2}) }^{ \frac{1}{2} })  \times 6x ({1 -  {x}^{2}) }^{2} }{ {(1 -  {x}^{2} )}^{6} }
hope it will help you.
Similar questions